
An Approach for Collaborative and Distributed Software
Process Improvement (SPI)

Viviane Malheiros1,3, Carolyn Seaman 2, José Carlos Maldonado1

1Instituto de Ciências Matemáticas e de Computação – USP
Caixa Postal 668 – 13560-970 – São Carlos – SP – Brazil

2 Department of Information Systems – University of Maryland, Baltimore County
1000 Hilltop Circle, Baltimore, MD, USA, 21250

3Serpro – Serviço Federal de Processamento de Dados
Av. Luiz Vianna Filho, 2355, Paralela, Salvador/BA, Brazil 49010-000

Abstract. Software Process Improvement (SPI) is an important challenge to

organizations. Scenarios of geographically distributed software development

highly reinforce key success factors to SPI. This paper presents an approach

to support geographically distributed SPI initiatives. ColabSPI is a distributed

and collaborative strategy and infrastructure to support SPI teams and

developers in handling different phases of a typical SPI lifecycle. A prototype

is presented together with some preliminary results and ongoing efforts.

1. Introduction

For most organizations, software processes must be technologically competitive,
adaptable and timely, and they must produce products that consistently meet customer
and business needs (Florac et al., 1997). Good software processes should help output
better software more cheaply and faster. Within such a scenario, Software Process
Improvement (SPI) becomes an important challenge to organizations.

Different advances have been made in the deployment of SPI standards and
models, for instance: CMMI (SEI, 2002), SPICE (ISO/IEC 15504, 2003), IDEAL
(McFeeley, 1996), MPSBr (Softex, 2005) and The Experience Factory (Basili et al.
1994). However, the current problem with SPI is not a lack of a standard or model, but
rather a lack of an effective strategy to successfully implement these standards and
models (Niazi et al., 2005). Much attention has been paid to which SPI activities to

implement instead of how to implement these activities efficiently.

Understanding how to implement SPI successfully is a hard task. From SPI
literature and field observations, we’ve been identifying possible factors contributing to
diminished SPI process performance and compliance regarding quality and time. So far,
we’ve found and we are going to present elsewhere, that many influences on the success
of SPI programs are related to coordination, communication and collaboration, and
mostly to the degree of developers’ motivation and participation in SPI initiatives.
Scenarios of geographically distributed software development (distributed software
teams) highly reinforce the need for dealing with such influences as:

• Processes for distributed software development (DSD) are more complex and
challenging, as they are supposed to deal with communication and coordination

III Workshop de Desenvolvimento Distribuído de Software

21

issues. The effect of dispersion can be significantly mitigated through the use of
structured software engineering processes (Ramasubbu and Balan, 2007) turning
the development process a critical success factor for DSD (Prikladnicki et al.,
2004) and making SPI extremely important on DSD context. However,
continuous improvement (SPI) of complex processes are more complicated;

• As developers’ participation on SPI initiatives is a key success factor, it is
important to provide ways to geographically distributed developers contribute to
process improvement.

Therefore, as DSD becomes more common the relevance of a distributed and
collaborative SPI increases. Bearing this in mind, we propose a collaborative and
distributed SPI approach to: (a) enhancing the communication and collaboration among
SPI stakeholders; (b) increasing developers’ participation in improving software
development process; and (c) allowing coordination of SPI initiatives. The goal is to
provide a strategy and a web-based project workspace to support: (i) SPI teams in
handling process improvement proposals, (ii) process evolution; (iii) doubt clarifications
and experience exchange; and (iv) management of SPI programs.

Our hypothesis is that SPI programs can benefit from a distributed and
collaborative strategy and an infrastructure that not only creates a knowledgebase about
a software development process and its improvements, but also allows SPI stakeholders
to communicate and organize their work. Our focus is on large organizations that deal
with DSD and aim to apply a standard processes to distributed development units.

By providing structured support, our approach may foster the emergence and
progress of a cooperative environment for SPI. It can address major influences to SPI
success or failure such as knowledge exchange and support; staff involvement and

motivation; and communication and collaboration. To support our approach, we’ve
considered that “software processes are software too” (Osterweil, 1997) and that more
and more software companies make their process models available in intranets in order
for them to be useful (Moe and Dyba, 2006). Important influences to our proposal are:
concepts of (1) DSD, as in the Open Source development paradigm, and (2) Knowledge
Management (KM) practices; and software infrastructure tools such as (3) Wikipedia;
and (4) Bug Tracking tools.

This paper presents ColabSPI, an approach to promote geographically distributed
SPI initiatives, supporting communication and collaboration, handling of process
improvement proposals, process support as well as process documentation. It
contributes to two major aspects of SPI: process evolution and compliance. The
following sections bring an overview of our approach (Section 4), its requirements
(Section 2) and influences (Section 3); and the ColabSPI in practices highlighting
preliminary results and ongoing efforts (Section 5). Related works are discussed in
Section 6. Finally our conclusions are presented in Section 7.

2. Key requirements for an SPI infrastructure

In previous work, an organizational structure that would improve developer’
participation in SPI efforts was suggested (Malheiros et al. 2008a) based on
experimental experiences, a first step towards distributed SPI. Further exploring SPI
program issues we propose an infrastructure that would support a distributed and
collaborative SPI work.

III Workshop de Desenvolvimento Distribuído de Software

22

To define infrastructure requirements, we took key factors as our starting point. We
have been collecting factors from primary and secondary studies, comparing them with
our own observations in the field, and grouping them according to their nature and
relationship into five groups: (i) Collaboration and Communication; (ii) Organizational
Aspects; (iii) Compliance issues; (iv) Continuous Improvement Issues and (v) Staff
Motivation and Participation. This grouping has given us a clearer idea of how to
convert some of these identified factors into positive influences on SPI. Thishas inspired
the definition of the infrastructure requirements. Recurrent factors were: (i) the need of
staff motivation and involvement; (ii) the benefits of feedback, support for discussions
and clear establishment of goals; and (iii) the availability of resources. Major
requirements were identified (see Table 1).

Table 1 – Major requirements for the ColabSPI approach

1 Communication mechanisms that can enable cooperation such as discussion forums and mailing lists. In
addition, the possibility of communicating events, news or SPI needs; publishing information on a message
board or informing a particular community of interest;

2 Access to SPI information through a unique starting point;

3 Process under version control and the possibility of changing the process by more than one person from more
than one place;

4 Collaborative SPI Strategy, with focus on empowerment and guidelines on how to contribute. Collaborative
mechanisms may enhance the availability of resources;

5 Process Improvement Proposals (PIP) handling process (workflow, roles and functionalities) and the
possibility of tracking each proposal status until its conclusion;

6 Collaborative support request handling;

7 Transparent backlog of PIP and support request allowing anyone to contribute to improvement analysis and to
clarify questions; and

8 User spaces filtering information regarding user actions, such as a list of PIPs submitted by the user.

3. Major influences on our infrastructure

We have observed how different software development paradigms and approaches deal
with issues like cooperation among distributed team members. We’ve focused our
research on techniques from different domains that extensively rely on communication,
collaboration and/ or coordination techniques. Considering that software process can be
seen as software too (Osterweil, 1997), we’ve searched for inspiration from:

Distributed software development - We’ve transposed major characteristics of
DSD to the SPI context, exploring how they could be extended to SPI. We were
particularly interested in initiatives to building networks of software communities in
large corporations (see Section 6). We have also considered reported issues related to
global DSD in wider context: Carmel et al. (2001), Maindantchick and Rocha (2002);
Prikladnicki et al., (2008). Some issues they arise may apply to collaborative and
distributed SPI. We’ve also considered Open Source development characteristics (Reis
and Fortes, 2002), as this is one example of distributed development. The following
characteristics, already adapted to deal with process improvement instead of software
development, are to be preserved: (i) the PIP management is distributed by the Internet;
(ii) the process improvement is collaborative and decentralized; (iii) participation in SPI
is motivated by personal interest of the user, or each one contributes according to his/her
interest, yet anyone can contribute in some way.

Wiki contributions - A wiki is a collaborative website where its content can be

III Workshop de Desenvolvimento Distribuído de Software

23

edited by anyone who has access to it, provided that they have the required access
levels. Wiki technology is relatively new and people are still experimenting with
different ways of using it (Fogel, 2006).

KM practices – Developing software can benefit from many KM practices, and
indeed several aspects of KM employed in software development have been studied.
There are many tools to support some KM practices (e. g. contribution, knowledge
acquisition, knowledge dissemination, collaboration) that can be useful to SPI. We are
particularly interested in how to promote collaboration and improve participation
benefiting from different skills. Knowledgeable people should be reachable for
knowledge exchange, mentoring, advice or consultation. Building networks and
“knowledge communities” powered by accumulated knowledge can be a good strategy
to facilitate SPI. A systematic review (Bjornson, 2007) pointed that there are many open
points regarding KM and software engineering. Aspects such as collaborative
approaches, economic aspects, and knowledge mapping are not yet extensively explored
in software engineering.

Bug tracking tools - As in software maintenance, it is possible to identify and deal
with the weaknesses of a process version, converting them into improvements to the
next version. In this way, one can relate error-handling management to PIPs. Both of
them follow a workflow including submission (proposal), evaluation, approval (or
rejection), implementation and deployment. In the software testing context this error
handling is being supported by Bug-tracking tools. These tools could be customized to
handle PIPs. According to Fogel (2006), the importance of a bug tracking system lies
not only in its usefulness to developers, but in what it signifies for project observers. For
many, an accessible bug database is one of the strongest signs that a project should be
taken seriously. In that sense, an active PIP handling environment can indicate the
wealthy of the SPI program.

4. ColabSPI: A collaborative /distributed SPI approach

Bringing all these influences together led us to explore collaborative
development environments (CDE) as a good starting point for a distributed and
collaborative SPI approach. A CDE is a virtual space wherein all the stakeholders of a
project – even if distributed by time or distance – may negotiate, brainstorm, discuss,
share knowledge, and generally work together to carry out some task, most often to
create an executable deliverable and its supporting artifacts (Booch and Brown, 2002). It
provides an integrated access for different mechanisms and tools, creating a virtual
project space focused on the particular goal of a team. If we consider SPI as this goal we
can imagine a virtual project space for the software development process, wherein
Software Engineering Process Group (SEPG) members and developers can work
together to carry out SPI. Likewise, they can negotiate, brainstorm, discuss and share
knowledge about improvements toward a better software development process. Here we
focus on software developers, SEPGs and specialist groups in their tasks of proposing,
analyzing, and discussing process improvements; and implementing and deploying
them, where they are physically separated and make use of the Internet as the medium
for their interactions.

ColabSPI supports major activities of the SPI lifecycle. Guidelines for deploying
SPI programs (e.g.: PDCA, IDEAL) usually suggests an iterative SPI, based on a
gradual and evolving strategy. They also refer to identifying, developing and evaluating

III Workshop de Desenvolvimento Distribuído de Software

24

improvement opportunities to next cycles of the process. ColabSPI allows identifying
and evaluating PIPs, developing such PIPs, according to their priorities, creating and
deploying new versions of the process. It also allows SPI management (planning,
monitoring and controlling). Handling SPI as a project is a common recommendation in
models and guidelines. ColabSPI implements this recommendation.

ColabSPI contributes to most of the CMMI goals from Organizational Process

Focus and Organization Process Definition process areas (see Table 2).

Table 2: Practices from CMMI supported by ColabSPI

Organizational Process Focus Organization Process Definition
SG1 Determine Process Improvement Opportunities
SG2 Plan and Implement Process-Improvement
Activities
GG2 Institutionalize a Managed Process
GG 3 Institutionalize a Defined Process

SG 1 Establish Organizational Process Assets,
particularly: SP 1.1-1 Establish Standard Processes and
SP 1.5-1 Establish the Organization’s Process Asset
Library
GG2 Institutionalize a Managed Process
GG 3 Institutionalize a Defined Process
GG 5 Institutionalize an Optimizing Process

ColabSPI allows all stakeholders involvement. Typical roles for distributed and
collaborative SPI (Figure 1) were defined based on experiences in SPI at a large
organization where SEPG members, engineering specialist groups and developers are
distributed (Malheiros et al., 2008) and on Open Source development typical roles (e.g.
Specialist groups hold rights equivalent to committers’ rights). As a developer
contributes to SPI he/she may be promoted from a general developer up to SEPG
member, being responsible for core decisions on SPI (meritocracy).

Figure 1: Typical roles for distributed and collaborative SPI

 Mechanisms provided by our approach are classified into four major groups: (i)
Collaboration and communication; (ii) PIP handling; (iii) Technical support handling;
and (iv) Process documentation and maintenance;

Figure 2 shows a mockup of the SPI collaborative and distributed infrastructure.
The screenshot highlights the virtual space of the ColabProcess “project”. ColabProcess
is an SPI project and all information about it can be accessed through one unique URL
(see number 1, Figure 2). Once in the virtual project space, all communication and
collaboration mechanisms are available to maintain and evolve the software
development process: forums; news; trackers (bug-tracker like tools); reports; files from
the software development process description itself; and historical data about it. Also,
information about all contributors is available.

All functionalities to address the requirements (e.g. mailing list, forums, trackers,
news) can be accessed through this unique starting point. Accessibility through the

III Workshop de Desenvolvimento Distribuído de Software

25

Internet can enhance flexibility, distribution and easy connection of new tools.

At the main page, it is possible to know the latest news (see number 2, Figure 2)
about the software development process. For instance, a SEPG can use this feature to
inform when the next conference about SPI will take place or when a new major release
of the process will be published. The software development process is under
configuration management control (like software would be) and it can be accessed
through a CVS link (see number 3, Figure 2). CVS keeps track of changes in process
files and allows several stakeholders (developers, testers, SEPG members, etc.) to
collaborate. All those stakeholders can be widely separated in space and/or time. Also,
from the main page, it is possible to access all trackers related to the improvement of the
software development process. For instance, it is possible to access all previous PIPs,
their status and who is handling each PIP (Figure 2, id. 4).

Figure 2 – The virtual project space of a software development process

The collaboration and communication module should augment SPI initiatives, by
fostering the emergence and progress of a cooperative environment for SPI. According
to Booch and Brown (2002), there is a spectrum of collaborative mechanisms that may
be applied to a Web community, each with its own value. For our purpose, providing an
infrastructure for SPI, we refer to some of these mechanisms particularly and add some
mechanisms to Booch and Brown’s list. Thus, “Mailing lists” will be applied for small
groups with a common purpose, conversations that wax and wane over time,
communities that are just getting started, and newsletters and announcements. “Message
boards” will be useful for asking and answering questions, encouraging in-depth
conversations, and providing context, history, and a sense of place. “News” will be
useful for spreading novelties and communicating events. For instance, announcing the
publishing of new software process releases or announcing that process version
validations are taking place.

The PIP handling module is designed to help SEPG to keep track of reported

1

2

3

4

III Workshop de Desenvolvimento Distribuído de Software

26

PIPs. It may be regarded as a sort of issue tracking system and was inspired by both
Bugtracking tools, such as Mantis, and Serpro’s tool for PIP handling, GM-PSDS
(Malheiros et al. 2008). This module will tackle all functionalities related to posting,
diagnosing, developing and concluding a PIP. Though majorly handled by one PIP
tracker and its implemented workflow, we also intend to allow improvements through
Wiki page editing tools, on a limited basis. Specialist groups could discuss assets and
evolve their content through the Wiki. Also, specific components of the process, such as
a guideline, could be evolved directly through a Wiki interface. However, placing the
whole software development process into a Wiki could expose the process to the
weaknesses of Wikis, such as: lack of a navigational principle, duplication of
information, inconsistent target audience (Fogel, 2005) and lack of meta-data.

Regarding process support, any developer may answer requests and workflow
states of support requests are limited to “submitted”, “need information” and
“answered”.

Through ColabSPI, it is possible to represent (write) a software development
process in many ways. In a previous work, part of our group developed Atabaque
(Malheiros et al. 2008b), a free software tool that can be useful for organizations using
web-based processes (available at http://sourceforge.net/projects/atabaque/). This or
another tool can be applied to evolve the software development process. We only
assume the process will be under configuration management control, whatever format
adopted. The infrastructure must allow access to the configuration management system.
Apart from that, process documentation is not the focus of this work.

5. ColabSPI in practice

Currently the SPI infrastructure is being forged based on an initial prototype. Our
approach is independent from technology and it is focused on mechanisms rather than
on specific tools. Even so, in order to experiment with our ideas in practice, and
evaluate their real value, we’ve decided to customize one of the available CDEs for
open source code. We’ve looked for previous tools that could completely or partially
fulfill our high level requirements. An exploratory Internet search was conducted to find
available collaborative tools that could be applied (customized) to SPI. Also, we
considered Rehem (2008), where different options of CDE were systematically analyzed
to be applied in the distributed software development in a large organization.

On such basis, the GForge CDE (http://gforge.org/) was selected as it’s more
suitable to the SPI approach requirements and because it is open source software,
allowing complete manipulation of the several communication and collaboration
mechanisms. In addition, being open source may facilitate the usage of the SPI
collaborative and distributed infrastructure in other organizations and, particularly in the
Qualipso competence centers (www.qualipso.org).

For analyzing ColabSPI we have created a SPI project in a GForge tool
instantiated at a large software development software organization. In such instantiation,
ColabSPI contains one general mailing list for SEPG, one mailing list for all developers,
and one mailing list for each software engineering discipline covered in the software
development process (e.g.: colabprocess-SEPG@spiforge.com). All mailing list
discussions are recorded and available for further search in the process project
environment. SEPG coordinator is the environment administrator. A forum was created

III Workshop de Desenvolvimento Distribuído de Software

27

to clarify doubts, with different entrances per discipline. A specific forum was created to
“New ideas for the process”. A question was posted in the message board related to
process compliance: “Does your project recalculate software size when being closed?”

Focusing on collaboration the main PIP handling workflow presented in
(Malheiros et al., 2008) was evolved to: allow every developer to see every PIP, even
those under evaluation and registering contributions to a PIP at any stage. A new tool to
support the new workflow is under construction with Mantis. The definition of a PIP
handling customization with Mantis was first developed by Malheiros et al. 2007.

Atabaque and EPF Composer (Haumer, 2007) were tested to process
documentation because they are open source tools; multi platform; generate the process
in a web-based format and can be used integrated to a configuration management system
for software process change control. Both presented satisfactory results on generating
new versions of the process. The SPEM is suggested to modeling the process.

The prototype of the infrastructure was analyzed by some members of the SEPG
group and was approved to be used in a pilot with all specialist group members. Piloting
with specialist groups before making the solution available to all developers is
compatible with SPI guidelines orientations.

In parallel, evaluation criteria are being detailed according to the GQM strategy
(Basili, 1992) to measure quantitative the approach’s value. Main factors that influenced
our approach (briefly mentioned in Section 2) are the basis for defining the evaluation
goals. We foresee tree major experimentation/ evaluation opportunities of our approach
in practice, where the measures will be collected and analyzed: (i) in a commercial
context, applying modules of our infrastructure to improve a current software
development process; (ii) in the Demoiselle Process definition and evolution
(www.frameworkdemoiselle.gov.br); (iii) in the Qualipso project context
(http://www.qualipso.org/). In Qualipso, CDEs are being exploited as a means of
managing Open Source Factory knowledge. Recently we are considering that the
infrastructure may be useful for documenting and evolving its Open Source process too,
following the approach presented here. Qualipso project aims to promote trustiness on
open source development, and it is particularly interested in trustworthy elements
related to development process.

6. Related works

Distributed software development is not a trivial task and it is becoming common both
in national and international organizations. Different solutions have been proposed to
deal with its complexity. For instance, some reports were found related to the usage of
CDE inside large organizations and to the understanding of networks of communities
around the development of software systems. However, their focus is on promoting an
environment for developing the software itself, not for supporting the SPI endeavor. To
the best of our knowledge most DSD studies focus on developers and their activities not
in SPI professionals or SPI activities. Even so, the following experiences on using CDE
or fostering software development communities in large organizations were considered
and adapted to SPI context: Riehle et al. (2009), Gurbani et al. (2006), Dinkelacker et al.
(2001), Melian et al. (2002) , Hupfer et al. (2004).

Vanzin et al (2007) present practices to define a global software process for a
distributed environment in a case study. It was useful for our approach as it brings

III Workshop de Desenvolvimento Distribuído de Software

28

factors that may impact process definition related to distributed development
characteristics. Our approach is stronger related to SPI key success factors in addition.
We could not find similar proposal of collaborative and distributed SPI strategies to
large organizations.

An initial idea of applying a hypermedia tool to monitoring level of the software
process management model for distributed groups was introduced by Maindantchick et
al.(1999).Existing SPI tools typically support assessors in collecting data during
assessments. They provide reporting capabilities to aggregate the collected results.
ColabSPI goes in a different/complementary direction and proposes a web-based project
workspace to support SPI teams in handling different phases of typical SPI lifecycle.
Some works focuses in the content of the distributed development process itself, for
instance APSEE-Global (Freitas, 2005), in the context of Process Based Software
Engineering Environment, extends the environment to distributed software development
characteristics. Our approach focuses on mechanisms to better improve software
processes definition, evolution and support.

7. Conclusions

This paper presented an approach that supports geographically distributed SPI
initiatives. It is suitable to major SPI models and guidelines and helps many phases of
the SPI life cycle. The ColabSPI infrastructure prototype was presented together with
some preliminary results. ColabSPI requirements were defined to handle major SPI
critical success factors. Currently the evaluation of ColabSPI in three different contexts
is being pursued. For more precise results, the GQM paradigm is being considered. The
discussion of distributed and collaborative SPI in the Qualipso project context may open
new directions for ColabSPI, for instance the maintenance and administration of a
maturity model and not only the process.

References

Basili, V. R. Software Modeling and Measurement: The Goal/Question/Metric Paradigm.
Technical Report UMIACS-TR-92-96. University of Maryland, 1992.

Basili, V., Caldiera, G. and Rombach, H.D. Experience Factory. In: Encyclopedia of Software
Engineering, v. 1, pages 469—476, 1994.

Bjornson, F. Knowledge Management in Software Process Improvement. Doctoral Thesis.
Norwegian University of Science and Technology, 2007 (Appendix A).

Booch G., Brown A.W. Collaborative Development Environments. Rational Software
Corporation, 2002.

Dinkelacker, J. Garg, P., Miller, R. Nelson, D. Progressive Open Source. Tech ReportHP, 2001.

Florac, W., Park, R., Carleton, A. Practical Software Measurement: Measuring for Process
Management and Improvement. Guidebook CMU/SEI-97-HB-003. SEI, PA, USA, 1997.

Fogel, K. Producing Open Source Software. O’Reilly Media. CA, USA. 2006.

Freitas, A.V. APSEE-Global: um Modelo de Gerência de Processos Distribuídos de Software.
Master Thesis, UFRGS, 2005 (In Portuguese).

Gurbani, V., Garvert, A., Herbsleb, J. A Case Study of a Corporate Open Source Development
Model. ICSE’06, May 20-28, 2006, Shanghai, China.

III Workshop de Desenvolvimento Distribuído de Software

29

Haumer, P. Eclipse Framework Composer. Available at:
http://www.eclipse.org/epf/general/EPFComposerOverviewPart1.pdf. April, 2007.

Hupfer, S., Ross, S., Patterson, J. Introducing collaboration into an application development
environment. Proc. of the ACM conference on Computer supported cooperative work, 2004.

ISO/IEC 15504 Information Technology - Software process assessment. 2003.

Maindantchick, C.; Rocha, A. Managing a worldwide software process. In: International
Workshop on Global Software Development, ICSE, 2002

Maindantchick, C.; Rocha, A. Xexeo, G. Software process standardization for distributed
working groups. In: Proc. 4th IEEE Int. Symp. And Forum on Soft. Eng. Standards, 1999.

Malheiros, V. Cunha, L. Rehem, S. Mantis-PMP: uma ferramenta livre para gestão de

mudanças em processos. ConSerpro, Brazil, 2007 (In portuguese).

Malheiros, V. Paim, F. Mendonça, M. Continuous Process Improvement at a Large Software
Organization. Software Process: Improvement and Practice, Wiley InterScience, 2008a.

Malheiros, V. Rehem, S. Maldonado, J.C. Atabaque: uma contribuição de sucesso na evolução

de processos. SBQS, 2008b (In Portuguese).

McFeeley, R. IDEAL: A User's Guide for Software Process Improvement. CMU/SEI-96-HB-
001, ADA305472. Pittsburgh, PA: SEI, Carnegie Mellon University, 1996.

Melian, C., Ammirati, C, Garg P., Sevón, G. Building Networks of Software Communities in a
Large Corporation. Tech Report HP, 2002.

Moe, N., Dyba, T. 2006.The Use of an Electronic Process Guide in a Medium-sized Software
Development Company, Software Process Improvement and Practice, Wiley InterScience.

Niazi, M., Wilson, D., and Zowghi, D. A framework for assisting the design of effective
software process improvement implementation strategies. J. Syst. Softw. 78, 2. Nov., 2005).

Osterweil, L. Software processes are software too (revised). In Proc. of ICSE, 1997.

Prikladnicki,R., Damian,D. and Audy,J. Patterns of Evolution in the Practice of Distributed
Software Development: Quantitative Results from a Systematic Review. Evaluation and
Assessment in Software Engineering (EASE), Bari, Italy, 2008.

Prikladnicki, Rl ; Audy, J.; Evaristo, R.. Global Software Development in Practice: Lessons
Learned. Software Process Improvement and Practice, USA, v. 8, n. 4, p. 267-281, 2004

Ramasubbu, N. and Balan, R.. Globally Distributed Software Development Project
Performance: An Empirical Analysis. ESEC-FSE’07, Croatia, 2007

Rehem, S. Relatório de avaliação de ferramentas livres para Ambiente de Desenvolvimento

Colaborativo. Tech Report - SERPRO, 2008 (In Portuguese).

Reis, C. Fortes, R. An Overview of the software engineering process and tools in the Mozilla
Project. Workshop on Open Source Software Development, 2002.

Riehli, D. et al. Open Collaboration within corporation using software forges. IEEE Software,
v.26 n.2, 2009

SEI - Software Engineering Institute. Capability Maturity Model Integration (CMMI SM),
Version 1.2. Technical Report CMU/SEI-2002-TR-011, SEI, 2002.

Softex. MPS.Br - Guia de Avaliação. 2006. (In Portuguese)

Vanzin, M., Ribeiro, M., Prikladnicki, R., Ceccato, I., Antunes, D. Global Software Processes
Definition in a Distributed Environment. In Proc. 29th Annual IEEE/NASA on Software
Engineering Workshop. IEEE Computer Society, 2007.

III Workshop de Desenvolvimento Distribuído de Software

30

	WDDS_3.pdf

