

Collaborative Software Development Process for

Geographically Distributed Teams

Andrea Pinto¹, Ana Carina M. Almeida¹
,2, Elisabeth Morais¹

¹Centro de Estudos e Sistemas Avançados do Recife (C.E.S.A.R)

Rua Bione, 220 - Bairro do Recife – CEP 50030-390

Recife - PE - Brasil

2Universidade Federal de Pernambuco (UFPE) – Centro de Informática

Recife – PE – Brasil

{andrea.pinto,acma,beth.morais}@cesar.org.br, acma2@cin.ufpe.br

Abstract. Several companies have started to work with geographically

distributed teams due to cost reduction and time-to-market. Some research

indicates that this approach introduced new challenges, because the teams

work in different time zones and have possible differences in culture and

language. A standard way to develop a system is a critical factor for project

success, because it ensures interaction and synchronism among sites, besides

that increases team productivity. In this way, the main goal of this paper is to

describe the solution adopted by a Brazilian team to develop code and write

documentation in a multisite project environment.

1. Introduction
Over the last decades, many companies have started to work developing software with

geographically distributed teams. A lot of advantages encouraged them to implement

software in multisite [Jorge, Rafael 2008]. The main factors that have driven distributed

software development (DSD) are:

 • Differences in the development cost among offshore centers – The market

demand for system development is bigger than the number of engineers available

[Damian, Zowghi 2002], due to the significantly increase of the engineer salary

in specific areas as well as the software cost. Besides, some governments

subsidize a taxes deduction for companies in order to stimulate Information

Technology (IT) business in their countries reducing the software development

cost [Jorge, Rafael 2008], [Carmel 1999].

• Time-to-market – Creating products with teams in different time zones in order

to accelerate development time by using the follow-the-sun concept [Jorge,

Rafael 2008].

• Qualified and available engineers to develop software [Jorge, Rafael 2008].

• Staying close to the customer in order to properly know their business and

needs [Jorge, Rafael 2008].

On the other hand, the DSD approach has many challenges to make the project

successful. Mainly for the project managers that need to synchronize the activities and

communication among different sites with different time zones, cultural aspects,

III Workshop de Desenvolvimento Distribuído de Software

89

language and sometimes different development process among sites [Jorge, Rafael

2008], [Herbsleb, Audris, Thomas, Rebecca 2000].

Ramasubbu’s research [Ramasubbu, Balan 2007] reveals that, even in a high

process maturity environment, a distributed team can have a low productivity and its

effect can be minimized by structured software engineering process adapted for DSD

projects.

The aim of this paper is to present the Contribution Processes, created for multi-

site development in order to implement an IDE (Integrated Development Environment)

software platform and elaborate a developer guide for supporting platform extension.

We describe the process flow, tools, roles and responsibilities, besides that, the main

challenges and lessons learned.

This article is organized on the following way: section 2 describes the project

purpose, environment and main challenges; section 3 shows development contribution

processes; section 4 presents the lessons learned and section 5 shows the work

conclusion.

2. Project Purpose and Challenges
The application domain discussed in this article is an IDE software platform for

different Mobile Platforms. We have 5 sites in Brazilian territories: 2 sites in the

northeast area and 3 in the southeast. Each team has at least 10 developer engineers. The

sponsor outsourced the project and he is located in the United States. The Figure 1

shows the sites localization.

Figure 1. Project’s sites localization

III Workshop de Desenvolvimento Distribuído de Software

90

 Different technologies were used to implement the software, such as Java and

C/C++. The software supports different operating systems, such as Windows, Linux,

and Mac OS.

The Site 1 (Platform) was responsible for creating a framework on top of the

Eclipse Platform in an extensible way, and for defining, together with other sites, a set

of features and standards to be extended by all sites.

The framework aimed to create a unified line of tools that gives a seamless

development experience to external developers.

The other sites were responsible for extending the Platform framework through

Eclipse extension points to create IDEs for different mobile platforms.

After a year of development, the Brazilian Site 1 proposed a new approach

regarding this application construction since the Platform code was being extended by

all Brazilian sites.

The proposal was to start the development in a collaborative way allowing

everyone to cooperate in a systematic way to improve the Platform code. To accomplish

this approach the Site 1 defined a collaborative process with a main objective; it should

not be a process that would impact the development process of the other sites. This

objective was important to keep the teams productivity. Besides that, the sponsor

requested to use as much as possible open source tools in order to minimizing the

project cost.

All sites communicate with each other as can be seen in the team distribution

presented in the Figure 2, and the processes defined for all sites considered the team

roles spread in the sites. The process activities were defined considering all the roles and

the relevance of their participation in the project, in addition an activity would be

executed by one or more roles distributed in the sites.

Figure 2. Project’s team organization

This proposal was a step ahead and added more complexity to the project,

besides the usual activities. The Platform project activities can be resumed as follow:

• Developing of the Platform project considering the needs of many sites

developing applications that will be later integrated on it;

III Workshop de Desenvolvimento Distribuído de Software

91

• Developing of applications that will be integrated in Platform in order to have a

single IDE for a range of mobiles and technologies; these applications must

follow Platform standards, and;

 • Evaluating and integrating contributions from all sites in the Platform code.

Collaborative development software by auto-organized and distributed teams is

not so trivial and requires definition of a development process considering a different

context from traditional software development.

The processes presented in this article were defined considering the project

specific needs mentioned above and a tracking mechanism was established to guarantee

the process improvement and adherence. The processes were defined by the Brazilian

sites and a kick-off meeting was performed involving all teams before to get the project

started [Almeida, Junior, Carneiro 2009]. This is an important practice for providing

alignment between all teams and preventing barriers that may block development of

effective contributions.

 The next section presents the processes related to the contribution activities from

all sites to the Platform application’s code and documentation.

3. Platform Contribution Processes
A well defined development process is a key point to any software project success; in

projects whose main characteristic is the distributed development this affirmation is

even more truthful regarding these projects complexities.

Models like CMMI [CMMI] includes in this scope specific practices to deal with

distributed development, such as establishment of empowerment mechanisms, project’s

shared vision and integrated team structure.

The Platform Contribution Processes, presented in the Figures 3 and 4, allows

collaborative development and are used by Platform and other site teams. These

processes are used to analyze the contribution requests in order to assure conformance

with product purposes; to develop contributions according to specified requirements,

standards and legal rules; verify contributions assuring product integrity; and finally

release contribution according to the Platform features schedule and configuration

management rules.

III Workshop de Desenvolvimento Distribuído de Software

92

Figure 3. Code Contribution Process Flow

These processes have similar structure and common roles, they are:

• Contributor: a person that collaborates with Platform, involved in new

development or improvement. They are not part of Platform development team.

They are originally part of development teams working for IDEs development,

however they also aim Platform evolution for attending their necessities.

• Platform Development Team: this team is responsible for developing and

improving Platform.

• Product Manager: responsible for analyzing contribution together with

platform development team.

• Platform Test Team: this team is responsible for testing Platform development

and improvements performed by contributors.

• Software Quality engineer: responsible for verifying if the contribution

development followed source code contribution process.

• Configuration Management Engineer: responsible for establishing baselines

and release contribution.

Besides that, common tools were used, they are:

• IBM ClearCase Tool: a proprietary version control tool, used to create and

maintain product repository.

• Mantis Tool: an open source change management tool through which the

contribution requests are submitted and tracked during their whole lifecycle.

• Client Source Forge: Open source version control tool, used to create and

maintain product repository. It is generally adopted by open source projects.

• Black Duck Tool: a proprietary code detection system used for avoiding

plagiarism.

III Workshop de Desenvolvimento Distribuído de Software

93

Figure 4. Developer Guide Contribution Process Flow

Both processes consider that a contribution is submitted through a request that is

evaluated by a board responsible for checking conformance with platform purposes.

This board is composed by product manager and platform development team. So, if a

contribution request is suitable, it follows for development when the contribution will

be properly integrated in the next software release. For a better understanding, the

activities of the code contribution process presented in Figure 3 are described in detail

below:

•Submit Contribution Request: Contributors submit a contribution request in a

change management tool, specifying what is going to be developed for Platform

application. Contribution request must be unambiguous and well written,

providing a good understanding.

•Analyze Contribution Request: Platform Team and Product Managers analyze

the contribution request verifying if it belongs to Platform framework purposes

and register evaluation results. After the evaluation, the decision taken is

included in the "Contribution Request". If the contribution request is suitable the

Platform Team firstly verify the priority of the proposed contribution

development and then assess the impacts of the contribution development

regarding other Platform work products, such as requirements, design, tests,

Open Source Software, Licensed Components and Developer Guide. If the

proposed contribution does not belong to the Platform scope, the "Contribution

Request" is cancelled and a justification is registered.

•Develop Contribution: Contributors develop contribution assuring conformance

with requirements, standards and legal rules, following the software

development process adopted by their organization

III Workshop de Desenvolvimento Distribuído de Software

94

•Submit Contribution: The Contributor submit the contribution in the change

management tool, considering all impacted artifacts, specifying the work

products locations for Platform team accessing them, being required to inform

also the code scan report location.

•Verify Contribution Integrity: Platform development team verifies the

contribution integrity in the Platform, executing tests.

•Audit Contribution: After a successful verification, the Platform Team software

quality engineer (SQE) audits the contribution before baseline establishment and

evaluates findings. The SQE verifies if all the process activities were correctly

followed, verifying inspections evidences for impacted software artifacts

(documentation and code), code scan report, test design and results. In case of

any gaps, they are described in the contribution. In this case, SQE decides with

platform development team if the "Baseline Request" may be forwarded for the

configuration management engineer for integration, considering that they can be

resolved in subsequent contributions. The analysis and decision are documented

in the contribution request. In case of no gaps or low risks gaps the audit is

considered approved and SQE forwards "Baseline Request" for the configuration

management engineer for integration.

•Release Contribution: After successful Platform SQE auditing, the baseline can

be established. However, the Platform configuration management engineer

consults the Platform development team to validate the label which the

contribution will be integrated. If none was defined, the baseline request status is

changed to “on hold”, until a label have been defined. The integration and

system tests are performed following the Platform development process. The

contribution is released in the planned platform label.

Although collaborative processes should be defined in a light way however

keeping the necessary formality for distributed development, some controls were

inserted in these processes aiming quality. According to [Hecker 2000], properly

organized and coordinated, distributed development can produce products faster and

with higher quality than would be possible in an isolated effort. This can not only

increase product functionality and quality but can also increase the value of the product

as a platform for third-party developers and channel partners. Based on that, each site

develops a contribution following their specific process; however their processes shall

follow common inspection and quality politics specified by the client sites.

Both processes were specified using EPF – Eclipse Process Framework that

allows reuse of the process elements. They were published in the Platform web site

accessed by all teams through Internet.

4. Lessons Learned
This section describes the lessons learned about the distributed project focusing on the

defined processes used by all sites.

It was noticed that the creation of both, code and developer guide contribution

processes collaborated to improve the spirit of a single team, no matter where these

were, supported by common tools.

Both processes were presented for whole team by a kick-off meeting. During

these meeting, open ended questions were asked, in order to check if the attendees

III Workshop de Desenvolvimento Distribuído de Software

95

understood the context, and also summarized the conversation in a meeting minutes

sharing it with all.

Another important approach adopted was to allow the sites followed their own

internal development process. In other words, they follow the collaborative process,

when it is necessary to submit and evaluate if a component could be integrated in the

Platform code. The intention using this approach was to keep teams productivity.

Regarding communication among development teams, Almeida [Almeida,

Junior, Carneiro 2009] describes an interesting strategy to keep all sites in the same

page. The Platform Project Portal was created to improve communication and share

information, like, teams’ features schedule and their release dates improving the

visibility of the other teams, creating a unified product vision that can help in their

features negotiation with the sponsors.

The processes were created using EPF which generate the output as HTML

format allowing to share the process in an easy way with all sites through the project

portal.

The technical documentation is stored on wiki site allowing the developers

writing and sharing information about the framework architecture with others. It

is a very interesting approach, because all sites were responsible to improve the

technical documentation, contributing with the topic that they have more knowledge

or feel more self-confident to document.

Last but not least, a very helpful good practice was the use of ambassadors

(people who travel between sites). This approach helped a lot to establish trust and

cohesion between the teams and sponsors [Almeida, Junior, Carneiro 2009].

5. Conclusion

The aim of this paper was to present the Contribution Processes, created for multi-site

development in order to improve an IDE (Integrated Development Environment)

software platform and elaborate a developer guide for supporting platform usage.

The collaborative processes defined, considering distributed teams working to

improve the Platform framework, have contributed substantially to reduce the sites

effort to working cooperatively, since their responsibilities and activities are clear

defined and presented, as well tracked and improved by Site 1.

 The processes did not add a bigger complexity to the usual sites development

activities, an objective that was achieved by not changing the sites internal activities; the

collaborative processes are mainly concerned to the activities of submitting, evaluating

and accepting or not the sites contributions considering the standards that have to be

followed and the project goals and priorities.

On the other hand it is important to understand the challenges that this approach

introduces due to sites localization, cultural differences, distinct cultures related to

processes usage, conflict of interests and the idiom.

III Workshop de Desenvolvimento Distribuído de Software

96

References
Jorge, A., Rafael, P., Desenvolvimento Distribuído de Software (2008). Rio de Janeiro,

Brasil. 2008, Elsevier.

Damian, D. and Zowghi, D. The impact of stakeholders? Geographical distribution on

managing requirements in a multi-site organization (2002). In RE, pages 319–330.

Carmel, E. Global Software Teams – Collaborating Across Borders and Time-Zones.

Prentice Hall, USA (1999).

Herbsleb, J., M. Audris, A.F. Thomas, E.G. Rebecca, Distance, dependencies, and delay

in a global collaboration (2000), ACM, Computer Supported Cooperative Work,

Philadelphia.

Ramasubbu, N., Balan, R. K. Globally Distributed Software Development Project

Performance: An Empirical Analysis (2007). Proceedings of the 6th joint meeting of

the European Software Engineering Conference and the ACM SIGSOFT Symposium

on the Foundations of Software Engineering (FSE), Dubrovnik, Croatia, September.

CMMI. Available at http://www.sei.cmu.edu/cmmi/.

Almeida, A., Junior, I., Carneiro, P., Managing Communication among Geographically

Distributed Teams: a Brazilian Case (2009). SEAFOOD.

Hecker, F., “Setting Up Shop: The Business of Open-Source Software”, IEEE Software

(2000) available at: http://hecker.org/writings/setting-up-shop, Last access May/2009.

III Workshop de Desenvolvimento Distribuído de Software

97

	WDDS-10.pdf
	1. Introduction
	2. Project Purpose and Challenges
	3. Platform Contribution Processes
	4. Lessons Learned
	5. Conclusion
	References

