Ecosystem Business Models and Architectures
John D. McGregor', Simone da Silva Amorim?

School of Computing
Clemson University
Clemson, SC 29634 USA

johnmc@clemson.edu

2Federal Institute of Education,
Science and Technology of Bahia
Salvador, BA Brazil 40170

simone.amorim@ifba.edu.br

Abstract. The ecosystem strategy has provided organizations with time and cost
savings by facilitating collaboration with other organizations with similar prod-
uct ideas and compatible business models. This strategy requires a compatible
software architecture that is extensible, flexible, and scalable. In this position
paper we clarify definitions, summarize our previous work, and describe our on-
going work that supports defining effective and efficient ecosystem architectures
and business models.

1. Introduction

Every organization that produces a software product is embedded in an ecosystem that
comprises its collaborators, competitors, suppliers, and customers. We use “ecosystem”
as an analogy to the natural environment in which predators and prey interact. The
ecosystems in which we are interested are socio-technical ecosystems in which organiza-
tions, people, and technologies collaborate and compete on the development of software-
intensive products. The ecosystem may simply be the natural customer-supplier business
interactions of one organization with those with whom it does business or it may be a care-
fully orchestrated strategy that involves legal entities such as open source foundations or
partner programs, formal charters, and fees for membership.

Each organization in the ecosystem is following a business model that is more
collaborative, more continuous, more personalized, and more transparent than traditional
counterparts [Prahalad and Krishnan 2008]. Businesses are involving customers in the
product design process much more deeply than a few focus groups. By using social media
the opinions, complaints, and suggestions of customers are available to product design-
ers as are their purchasing patterns. Rather than waiting for customers to initiate another
purchase, organizations establish a continual dialog via newsletters, reminders of events,
and other occasional communication. The data gathered from these continuous, collabo-
rative relationships support the design of products that can be personalized based on data
collected in the ecosystem. The design process becomes more transparent to customers
as more information is revealed on both sides to establish the continuous relationship.

The software architecture underlying an ecosystem structure 1is criti-
cal to long term success because it unifies the work of personnel who are



distributed over different organizations and over geography. In our previ-
ous work we have illustrated the need for the architecture of products, built
following an ecosystem-based strategy, to be flexible, extensible, and scal-
able [da Silva Amorim et al. 2013] [McGregor et al. 2013] [da Silva Amorim et al. 2014a]
[da Silva Amorim et al. 2014b]. The products must be sufficiently flexible to allow each
ecosystem member to configure easily the core product to meet the needs of their
particular customers. The architecture must be sufficiently extensible to allow completely
new features to be added to the core with minimal modifications. The architecture should
be sufficiently scalable to support the anticipated growth over the product life cycle.

We have observed that productive and robust ecosystems are centered around ex-
plicitly defined business models and a software architecture designed to satisfy those busi-
ness models. There needs to be explicit linkages between the characteristics of the ecosys-
tem strategy, business models, and the quality attributes of the product architectures.

The contribution of this paper is an analysis of the interactions of the three qual-
ity attributes, flexibility, extensibility, and scalability, with popular ecosystem business
models. We discuss the mechanisms that support these attributes and the tradeoffs that
result in products with these attributes as high priorities. We illustrate with examples
of specific architectures. The remainder of this paper is structured as follows: section 2
presents background relevant to understanding the analysis, section 3 presents an analysis
of quality attribute interactions, and section 4 summarizes our work and describes next
steps.

2. Background

2.1. Business models

A successful business model has a customer value proposition, profit formula, key re-
sources, and key processes [Johnson et al. 2008]. We will use these elements as we an-
alyze the impact of architecture qualities on business models in the next section. We
briefly present three business models, which will be used in the analysis, and we will
provide more details during the analysis discussion.

2.1.1. Coopetition

The “‘coopetition” business model is an efficient product development strategy that
leverages the collaboration among organizations in the ecosystem to share effort
and risks among the group. The group of organizations identify a core architec-
ture that they wish to share among themselves, sometimes referred to as a plat-
form [Baldwin and Woodard 2008]. The group collaborates in the planning and design
of the core architecture. They implement the core and often add frameworks that they
think will be useful in building products. These same collaborators then individually
compete with each other by taking the commonly developed artifacts and extending or
configuring them to produce a product of interest to their specific customer base. The
coopetition model’s value proposition addresses faster time to market and shared risk;
its profit formula is based on software reuse; key resources such as intellectual property
(IP) surrounding the core architecture which must be managed and key processes such
as management by consensus and promotion by meritocracy. For example, BMW applies



the coopetition business model to developing automotive systems through the AUTOSAR
Partnership, which has over 100 member organizations. The basic artifact is an automo-
tive platform from which other vehicles can be built. BMW benefits because it can share
some of the risk of a new model with competitors such as Ford and GM and because the
extensive reference architecture allows BMW to produce more quickly and cheaply than
rivals that are not in the partnership.

2.1.2. Multi-sided markets

Hagiu and Wright defines a multi-sided market as “an organization that creates value pri-
marily by enabling direct interactions between two (or more) distinct types of affiliated
customers” [Hagiu and Wright 2011]. In this model, an organization creates a product
that brings together two other groups that directly interact. Most often the product de-
veloper also establishes the market that creates value by having two types of clients. The
clients also provide feedback on improving the software supporting the market. This busi-
ness model’s value proposition is to arrange for information suppliers and consumers to
be able to find each other; the profit formula is either fee-based or advertising-based; the
key resources are the software platform and members of the two client pools; the key
processes are developing the software and attracting clients. For example, the Science
Exchange provides a web portal where laboratories can register services which they of-
fer [Science Exchange 2014]. Research groups can use the portal to locate services that
they may need as part of their experimentation.

2.1.3. Partner program

A large organization may establish a “partner” program whose membership is open to
other organizations interested in collaboration on one or more products. These organi-
zations often pay a fee in order to gain the advantage of early access to new releases of
a product or special access to source code or other artifacts which they can use to build
extensions and apps. This early access allows the partners to have new products synchro-
nized with the release of a new version of the main product; however, partners usually
do not have special access to source code and use the core application programming in-
terfaces (APIs) to build products. The value proposition is being first to market, which
is an important advantage [Popp 2011]; the profit formula can be fee-based, in-kind con-
tributions, or based on the product extensions attracting more buyers to the core product;
the key resources are the plans and designs of the dominant organization; key processes
are attracting partners and information sharing processes. For example, Microsoft has a
partner program for many of its products [Microsoft 2014]. Although definitely not open
source, Microsoft teams gather input from a variety of sources including the partners and
build roadmaps of products and features. Partners’ early access does not give them any
special access to source code; however, they are given access to the planned APIs earlier
than non-partners.

2.2. Quality Attributes

Based on our experience with a number of ecosystems in a number of domains,
we identified three quality attributes of the core architecture that contribute to



the success of an ecosystem: Extensibility, Scalability and Flexibility. We have
investigated how these quality attributes are present in ecosystem architectures.
[da Silva Amorim et al. 2013][da Silva Amorim et al. 2014a][da Silva Amorim et al. 2014b]
present the findings for each attribute and describe their impact in ecosystem architec-
tures.

In our first study about Extensibility[da Silva Amorim et al. 2013] we investigated
the APIs of ecosystem platforms. APIs are the common mechanism that is used to allow
that external developers to connect their applications to the platform. A well-designed
API is essential to keeping external developers productive and satisfied. We identified 4
features with considerable influence in the building of an efficient API: Completeness,
Complexity, Design and Documentation. A complete API contains all the API elements
necessary to make developers’ work easier; the complexity of an API is reduced by elim-
inating details not needed to understand how to use the functions; the design of the API
influences how the components are organized and how decisions are made during build-
ing process; the documentation of the API offers guidance for external developers if it
is well-organized and clear. We examined these APIs features in 3 ecosystem platforms,
Hadoop [Monteith et al. 2013] that is increasing in use, Eclipse [Wermelinger 2009] that
is in solid use and CORBA [Schmidt 1993] that is declining in use. We evaluate how
these features are present in these architectures in order to illustrate extensibility in these
ecosystem architectures.

In our second study[da Silva Amorim et al. 2014a] we investigated the character-
istics that contribute to build a scalable ecosystem. We used the six features defined by
Bondi [Bondi 2000] that describe the types of scalability in general systems: load, space,
space-time, structural, distance and speed/distance. We extended this classification and
defined more two additional features: artifact and people. Artifact scalability concerns
the increased number of managed artifacts over time. This increase occurs over chrono-
logical time, when several organizations join to ecosystem, over and over the phases of
the development process as they add new features to the platform. People scalability re-
lates to the ecosystem’s ability to manage the growth of the membership of people and
organizations. These new participants contribute to diversity in the environment and im-
prove the robustness and sustainability of the ecosystem. In addition, we performed case
studies with two ecosystems, the Eclipse Foundation [Wermelinger 2009] and Apache
OODT [Apache Foundation 2014] to examine these features in real-world ecosystems.

In our latest study [da Silva Amorim et al. 2014b], we analyzed features that in-
fluence the flexibility of ecosystem architectures. These features were classified into two
dimensions: business and technical dimensions. The business dimension refers to inter-
actions among internal and external developers in addition to political and economical
aspects that influence design decisions that allow the building of flexible architectures.
The technical dimension considers the technical attributes with special attention to the
explicitly defined features of the architecture. We used Baldwin’s approach that is based
on the Propagation Cost metric [Baldwin et al. 2013] to adapt for ecosystems architec-
tures. The original approach uses the design structure matrix (DSM) to record depen-
dencies among the modules of system and to calculate the propagation cost considering
this cost as a measure of the system flexibility [MacCormack et al. 2006]. It does not
consider the dependencies of the API connected to the platform. We added weights in-



side the matrix where the values represent dependence with a module of the API. This
is the first step to get a different metric specific for ecosystem architectures. We applied
this metric in the Apache OODT ecosystem to exemplify the adaptation of the flexibil-
ity [Apache Foundation 2014].

3. Analysis

An ecosystem is successful if it continues to attract participants and is compatible with
their business models. This motivates the need for a platform that can meet the needs of
a wide range of participants. The platform is based on a core architecture that is scalable,
flexible, and extensible. Given the basics defined in section 2 we now consider how these
qualities support three ecosystem business models.

3.1. Business model characteristics

Table 1 provides a brief description of the linkages between the business process charac-
teristics described in [Prahalad and Krishnan 2008] and the three business models we are
investigating.

Table 1. Business models vs. properties

Coopetition Multi-sided Market Partners

Collaborative

Ecosystem members co-develop products and
compete on the deployment of those prod-
ucts.

An ecosystem member collaborates with two
consumer markets to bring them together.

The dominant producer collaborates with
smaller producers.

Continuous

Feedback on innovations from product users

Feedback from both markets informs the plat-

Ecosystem members work to attract new

informs platform developers. form supplier. clients, maybe even individuals, into the

product innovation process.

Personalized Platform may be used directly by individuals

instead of other product builders.

Participants can filter a market to receive only
the information they wish to have.

Users select the partners they wish to work
with and the add-ons they want to use.

Transparent Open source development ecosystems show

everything from rules to voting.

Links to outside information energize both
markets through competition.

Published categories of membership instead
of individual transactions level the playing
field.

3.2. Analysis by business model feature

The three quality attributes address each of the four parts of a business model but in
different ways for different models.

3.2.1. Value Proposition

The basic value proposition for ecosystem strategies includes reduced costs, quicker de-
livery of new features, and improved quality. These benefits are realized from improved
synergies among members of the ecosystem and are realized by both developers and users.

Flexible - The coopetition business model and the multi-sided markets model both
benefit from the flexibility provided by the variation mechanisms in the core architecture
to reconfigure the core to address multiple audiences. Most partner programs provide
less flexibility and the partners only build extensions rather than reconfiguring the core
product.

Extensible - The coopetition business model has less need for extensibility be-
cause the intense interactions in designing the core platform gives opportunities for antic-
ipated changes to be identified and accommodated via variation mechanisms. The multi-
sided markets business model uses extensibility when a specific client population can
be attracted by domain-specific features such as background checks for a dating service.



The partner programs extend the core product but market timing is controlled by the core
product.

Scalable - The multi-sided markets and partner models are based on handling
specific client loads so scalability is critical. The coopetition model is more generic and
certain types of products might be load sensitive such as the size of the product to be built
in a tools ecosystem.

3.2.2. Profit formula

The profit formulae for ecosystem strategies vary across strategies and roles of organi-
zations, but what is common is that most strategies use an indirect formula. That is, the
organizations using many of the ecosystem strategies do not directly receive payment for
some of the work that is done. The work on the core platform is, in most cases, pooled
for the common good, often as open source. The profit may come from delivering an
audience for advertising-based models or from the ability for each participant to use the
work of the whole group as the basis for future products.

Flexible - The flexibility of the core platform enhances the profit formula of an
organization by giving the organization options for future products and helps attract and
retain developers. The effort required for inserting the variation mechanisms and for later
exercising these options is a cost against that profit. The coopetition model is particularly
sensitive to how flexible the platform is since the expectation is to produce products as
rapidly as possible.

Extensible - The extensibility of the core platform is the key to profit in the
ecosystem architectures. Anticipating all future features is impossible; however, ecosys-
tem architects manage future feature development through the insertion of variation mech-
anisms. The use of loose coupling and well-defined APIs reduce the cost of defining the
extensions required for products and thereby increase profits.

Scalable - Products that utilize the multi-sided markets strategy will need to scale
in multiple dimensions in order to profit. Being able to handle an unconstrained number
of participants on each side of the market will yield the best profit.

3.2.3. Key resources

Personnel, money, and facilities are the key resources specified in most ecosystem busi-
ness models. The facilities in particular include tools for collaboration and social net-
working tools. The ecosystem is as strong as the interactions among the organizations
and between the organizations and its customers.

Flexible - Developers who were not involved in building the core can become
productive more rapidly due to the variation mechanisms in place in the flexible architec-
ture. This conserves all of the key resources. The multi-sided markets strategy follows
a distinct pattern which can be reflected in variation mechanisms and recipes to speed
development and conserve resources.



Extensible - Well-defined APIs in an extensible architecture make it easy for or-
ganizations following a partner strategy to attach their product extension to the main prod-
uct. Up-to-date documentation, example architecture instantiations, and other aids assist
the developer in building product extensions.

Scalable - The multi-sided market strategy is sensitive to scaling from a resource
perspective. The searching and matching that usually is the focus of such a strategy needs
an architecture that maintains a linear growth pattern.

3.2.4. Key processes

The ecosystem business models usually include collaborations such as peer-to-peer,
dominant-to-subordinate, and multi-way interactions. The models also include devel-
opment processes for both the core platform and products that are extensions of the core.

Flexible - The explicit variation mechanisms inserted in the core product to make
it flexible allows the development of the products to follow a set pattern making the pro-
cess easy to define and follow. Ecosystems using the coopetition strategy select the vari-
ation mechanisms that first fit the situation and then that are the easiest to exercise.

Extensible - The partner strategy will benefit the most from having a standard set
of processes for defining and then for using the APIs in the architecture because partners
are usually limited to accessing the product through APIs to define extensions. In the
coopetition model the organization who developed the core is also developing the product
and should have some residual knowledge that goes beyond the APIs and should have
sufficient access to benefit from it.

Scalable - The development processes must accommodate a changing number of
organizations and their contributed resources. The processes must be able to scale in
a distributed environment. For the ecosystem to be successful the development process
must be able to support increases in number of organizations, number of developers, and
number of projects.

4. Summary

The ecosystem strategy supports a number of unique business models and enhances some
traditional ones as well. Each model supports different value propositions, profit is real-
ized in different ways, and key resources and processes impose different constraints. The
architects and developers building the core architecture need to understand the business
model that ultimately will be the guide to success in order to prioritize how to handle
variation points, API definitions, and algorithm growth rates.

Our future work will include defining measures which distinguish ecosystems that
possess differing degrees of flexibility, extensibility, and scalability and does so in units
that are useful to ecosystem participants. The processes will have to address the wide vari-
ation in how the core architecture will ultimately be used. We will also identify ecosystem
design patterns.

References
Apache Foundation (2014). Apache oodt. http://oodt.apache.org/.



Baldwin, C., MacCormack, A., and Rusnak, J. (2013). Hidden structure: Using network
methods to map product architecture. Technical Report Working Paper 13-093, Har-
vard Business School.

Baldwin, C. Y. and Woodard, C. J. (2008). The architecture of platforms: A unified view.
Technical Report 09-034, Harvard Business School.

Bondi, A. B. (2000). Characteristics of scalability and their impact on performance. In
Proceedings of the 2nd international workshop on Software and performance, pages
195-203.

da Silva Amorim, S., Almeida, E. S. D., and McGregor, J. D. (2013). Extensibility in
ecosystem architectures: an initial study. In WEA, pages 11-15.

da Silva Amorim, S., de Almeida, E. S., and McGregor, J. D. (2014a). Scalability of
ecosystem architectures. In WICSA, pages 49-52.

da Silva Amorim, S., McGregor, J. D., Almeida, E. S. D., and von Flach G. Chavez, C.
(2014b). Flexibility in ecosystem architectures. In WEA.

Hagiu, A. and Wright, J. (2011). Multi-sided platforms. Technical Report 12-024, Har-
vard Business School.

Johnson, M. W., Christensen, C. M., and Kagermann, H. (2008). Reinventing your busi-
ness model. Harvard business review, 86(12):57-68.

MacCormack, A., Rusnak, J., and Baldwin, C. Y. (2006). Exploring the structure of
complex software designs: An empirical study of open source and proprietary code.
Management Science, 52(7):1015-1030.

McGregor, J. D., Monteith, J. Y., Amorim, S., and Almeida, E. (2013). Modeling the
contributions of software architecture to the success of an ecosystem. In Proceedings
of SATURN - SEI Architecture Technology User Network.

Microsoft (2014). Microsoft partner program. https://mspartner.microsoft.
com/en/us/Pages/index.aspx.

Monteith, J. Y., McGregor, J. D., and Ingram, J. E. (2013). Hadoop and its evolving
ecosystem. In Proceedings of the Fifth International Workshop on Software Ecosys-
tems, pages 57-68.

Popp, K. M. (2011). Hybrid revenue models of software companies and their relationship
to hybrid business models. In IWSECO@ICSOB, pages 77-88.

Prahalad, C. and Krishnan, S. (2008). The New Age of Innovation: Driving Cocreated
Value Through Global Networks. McGraw Hill professional. McGraw-Hill Education.

Schmidt, D. C. (1993). The adaptive communication environment: An object-oriented
network programming toolkit for developing communication software.

Science Exchange (2014). https://www.scienceexchange.com/.

Wermelinger, M. (2009). The architecture evolution of eclipse.
http://michel.wermelinger.ws/chezmichel/2009/10/
the—-architectural-evolution-of-eclipse/.



