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Abstract. Systems engineering has invested considerable efforts in the 
development of complex-large systems, often known as Systems-of-Systems 
(SoS). However, the systematization of current engineering practices based on 
the inherent complexity and size of these systems is still challenging for 
software engineers. In this light we focus in this paper on the evolution aspects 
of SoS using dynamic variability techniques. We suggest paths where runtime 
variability mechanisms can help to manage the evolution of such complex-
large systems.  

1. Introduction 
The discipline of Systems Engineering is considered an interdisciplinary field focused 
on the design and management of large-scale systems [Sage 2000]. Systems engineering 
deals with all those organizational and technical disciplines where a complex system is 
considered and integrated as a whole. System engineering overlaps with other technical 
and human-centered disciplines (e.g., control engineering, project management, 
industrial engineering or mechatronics) aimed to produce and manage complex software 
systems. Nowadays, the genesis and development of large Ultra-Large-Scale (ULS) 
systems [Northrop 2006] perceived as a System-of-Systems (SoS) bring many 
challenges from its conception to its maintenance and evolution.  
SoS encompasses the integration of various operationally independent systems, even 
developed with different technologies and for diverse platforms. An adequate 
integration has been more and more necessary to promote cooperation among these 
independent systems in order to provide more complex functions, which could not be 
provided by any system working separately [Maier 1998]. One important challenge for 
SoS development refers to its evolutionary development. Complex systems that exploit 
context-awareness and modify their behavior at runtime demand more complex 
maintenance procedures. As functions and purposes of SoS can change at runtime and 
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new constituents can be reassembled to perform a different mission, the challenge for 
adaptive behavior in SoS demands specific solutions.  
In this scenario, this paper discusses about SoS evolution. In particular, we focus on 
addressing how dynamic variability techniques can support the evolution of such 
complex systems. The remainder of this paper is as follows. In Section 2 we 
characterize SoS from an architectural point of view. Section 3 discusses the evolution 
and needs of SoS that demand dynamic adaptation and Section 4 motivates the role of 
dynamic variability as key for the evolution of SoS. In Section 5 we outline the 
application domain of Airport Management Systems and in Section 6 we suggest how 
dynamic variability can help to develop and evolve better such large-scale systems.  
Finally, in Section 7 we draw our conclusions and future work. 

2. SoS Characterization 
An SoS is constituted of various operational and managerially independent, 
heterogeneous constituents interoperating and complying with a larger mission [DoD 
2008]. Several examples of SoS can be identified; for instance, a medical system 
integrating systems to diagnosis, treatment, and management of patients, airport system, 
and avionics system, including several of them characterized as critical embedded 
systems.  
Two main characteristics are directly related to the constituent systems of an SoS: (i) 
Operational independence: each constituent can deliver its own functionalities when not 
working with other constituents; and (ii) Managerial independence: constituents keep 
their own managerial sphere, being sometimes developed by diverse companies or other 
institutions. In addition, considering the whole SoS, four characteristics are inherent: (i) 
Emergent behavior: SoS can deliver new functionalities resulting from constituents 
working together; (ii) Evolutionary development: functions and purposes of SoS can 
dynamically change at runtime; (iii) Geographic distribution: constituents of an SoS can 
be geographically distributed; and (iv) Runtime architecture: a new organization of the 
constituents is sometimes necessary in order to comply with the SoS evolution. As 
result of these characteristics, SoS becomes naturally unpredictable regarding to what 
can happen during their execution. Moreover, unpredictability also characterizes the 
environment where a SoS is being executed. Moreover, software essentially influences 
the design, construction, deployment, execution, and even evolution of SoS. Therefore, 
the backbone of the characteristics of both the constituents and the whole SoS is the 
software-intensivity.  
Considering the rise of software-intensive SoS and intending to systematize their 
development, several initiatives from Software Engineering area can be identified. Both 
academy and industry have invested efforts in that direction; however, in general, these 
initiatives need still to be more experimented and matured. From the SoS software 
architecture perspective, it is also required more research efforts. Software architectures 
promote quality attributes, mainly interoperability, adaptability, security, reliability, and 
performance, considered most relevant ones for SoS [Nakagawa 2013]. There are also 
challenges that need be overcome, including the investigation and establishment of 
approaches to create, represent, evaluate, and especially evolve these architectures. 
Specifically, these architectures must be also prepared to support dynamic evolution, as 
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evolution has sometimes occurred without adequate, systematic control, resulting in 
degradation of their quality. 

3. SoS Evolution Challenges 
Managing the complexity of SoS is not easy, demanding complex organizational 
procedures. Several modern systems use context information to more efficiently 
perform the possible variations and adaptation of their complex operations, which 
require changes in their behavior. As the evolution of SoS is naturally a challenging, 
complex task, SoS should optimally and adaptively manage the information and 
resources according to varying context conditions (e.g., smart cities, intelligent 
transportation, wireless sensors, or warfighter systems). 
Viewing SoS as a software product line where many systems can interoperate to achieve 
the desired functionality facilitates the development, evolution, and management of 
SoS. As the variety of SoS can be huge, we will focus on this work on those systems 
that require adaptive behavior and where the integration of complex technologies and 
platforms demand a significant degree of systems engineering activities. From this 
perspective, we state the following challenges focused in the SoS evolution: 
Smart and runtime adaptation and reconfiguration: SoS with adaptive and 
autonomous behavior should provide mechanisms to change their behavior at runtime 
with minimal or none human intervention. Reconfiguration at runtime can be possible if 
the solution provided is feasible and performed in many cases under strict timing 
requirements; 
Dynamic selection of choices: Many autonomous systems need to optimally make 
runtime decisions. Hence, variability management at runtime is still a challenging task 
for unforeseen scenarios; 
Runtime management: The possibility of many critical complex systems to change 
from one operational mode to another demands mechanisms where the system variants 
can change at post-deployment time; 
Awareness of runtime decisions: Software designers should be aware of which 
runtime changes can affect to critical parts of the architecture. Consequently, there is a 
strong need to notify the relevant stakeholders about critical runtime changes; and  
Ripple effect of runtime decisions: As safety and reliability are important design 
concerns, critical decisions made by an autonomous behavior may impact on other 
critical parts of a complex system. Hence, we need solutions to track on the possible 
deviations of the normal system’s operational mode when a change may cause damage 
on other parts of the system.    

4.  The Role of Dynamic Variability 

Software product lines have proven as a successful technique for building families of 
related systems, often with a high degree of complexity. The evolution of a product line 
is achieved on behalf of software variability techniques [Capilla 2013], which maximize 
reuse and manage efficiently the variations of their family members. However, when 
complex systems demand runtime solutions able to manage the variations of systems 
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dynamically, runtime variability becomes a relevant technique. Because managing the 
variations at runtime is still in the infancy, the emerging parading of Dynamic Software 
Product Lines (DSPLs) [Hinchey 2012] aims to manage the variations of systems at 
execution time. In this regard we discuss in this section those DSPL techniques that can 
be suitable for development and evolution of SoS systems that exploit context-
awareness and runtime behavior. 

Context-aware properties are the base to exploit runtime adaptation in many complex 
systems. The evolution of SoS can be achieved better modeling the contextual 
information using variability techniques. This contextual information of SoS that must 
be managed at runtime enhances the behavior of the system and supports better the 
evolution for unforeseen scenarios, as new functionality could be added, removed, or 
changed dynamically. In addition, system dynamics is an approach of systems 
engineering aimed to understand the behavior of complex systems over time. However, 
one step beyond on simulation of the behavior of complex systems refers to those 
solutions that can anticipate system changes at runtime. From a previous work we stated 
the challenge for managing runtime variability [Capilla 2011] as a promising solution to 
evolve SoS and which techniques can be suitable to model, change, and optimize the 
variations that happen when the behavior changes [Capilla 2014]. Consequently, 
runtime variability proves as a suitable technique for those SoS that demand adaptive 
and sometimes unpredictable behavior during execution time. In next section we discuss 
potential solutions at the architectural level for SoS that use context information and 
demand runtime adaptation in order to address the evolution challenges described in 
Section 3. 

5. Airport Management Systems 
Regarding the research methodology, in this preliminary work, we did an informal 
analysis of the target application domain based on the long experience of one of the co-
authors. We did not performed an exploratory case study [Robson, 2002; Runeson 
2009] or more formal analysis, as in this position paper we only wanted to state the 
main key areas where SoS development can be enhanced with dynamic variability 
techniques for the development of complex critical systems. In this light, one important 
domain suitable for SoS is the case of Airport Management Systems (AMS), which 
encompasses the automation of airport procedures in various areas, such as information 
systems, control and computerized remote controls, computer equipment, billing, 
baggage handling, security, weather information, controls signaling, and allocation of 
airport facilities, among others. All these key areas must work and cooperate in a 
coordinate and synchronized manner to handle the normal airport’s operations and 
reduce human intervention. At present, the trend is to achieve maximum integration to 
maximize coordination and usage of resources and integrate middleware from different 
vendors in order to guarantee real-time operations. Consequently, reliability, safety, and 
security are major quality concerns addressed by this kind of system, many of them 
redundant in the AMS.  Some of the subsystems that belong to AMS are the following: 
Airfield lighting control systems: this system controls the lighting aids installed on the 
airport (runways, taxiways, stop bars, etc.), and in other cases light towers and 
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obstacles. In small airports this system is often integrated with the power control 
system; 
Weather information system: it is the responsible for acquiring, processing, 
presenting, recording, and disseminating information on the prevailing weather 
conditions at the airport and is vital for normal airport’s operations. This system 
computes parameters extracted from a variety of sensors, such as wind speed and 
direction, atmospheric pressure, rainfall and humidity detection, and it can compute 
complex measures such as the Runway Visual Range (RVR); 
Automatic baggage handling system: this system results key for the operation of large 
airports as it depends of the number of passengers and the season where passengers 
travel. It encompasses other subsystems that perform different functions with the 
luggage (e.g., billing, transportation, security, classification, etc.) and is considered one 
of the most cost-consuming systems in large airports; and 
Airport security system: the aim of this system is to manage a wide variety of 
subsystems and services to control intrusion detection and the inner perimeter using 
CCTV cameras, access control, and fire detection sensors. Various security groups are 
associated to different roles and stakeholders.  
Other systems belonging to the AMS are: the electrical control system to ensure an 
uninterrupted power supply using a large variety of sensors and analyzers, the 
allocation of airport resources system, which uses large databases and real-time 
information to allocate resources, and the standard communication system, which 
interconnects basic services and all voice, radio, and internet communications. Many 
other airport facilities can be integrated under the AMS, such as tunnel control system, 
passenger information system, slot management system, parking control system, airport 
GIS, aircraft docking systems, and many more.  
As the large variety of subsystems and parameters is sometimes unmanageable for the 
many situations that may occur in an airport, the integration and configuration of all 
these system is hard. In many situations, the diversity and amount of the data managed 
by these subsystems as well as the responses and operations they need to perform 
depend on the state of other systems (e.g., a fire detection system can generate 
automatic actions on the access control system and the automatic baggage handling 
system, activating different alarms outside the airport). Consequently, the variations and 
the diversity of runtime scenarios complicate the maintenance and evolution when new 
requirements demand changes in the AMS. According to the SoS evolution challenges 
described in Section 3, and in order to address the large number of scenarios that may 
arise in the airport’s daily operations, we identified the following challenges that AMS 
subsystems need to address regarding the dynamic adaptation and reconfiguration 
operations: 
Challenge 1: Diversity of information sources where much of the information comes 
from the environment. As sensors belonging to different subsystems determine the 
airport configuration in real time, the AMS should provide a way to integrate all the 
information and distribute it to the implied stakeholders; 
Challenge 2: Growing number of mobile employees that often use location services. 
The AMS should manage such diversity of information, aiming to exchange important 
data among systems and users in raw or cooked format, even outside the airport; 
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Challenge 3: Dynamic reconfiguration of systems that must be adapted to unforeseen 
situations. The huge number of interfacing systems and the kind of data they share 
becomes a problem to solve in case a system becomes off-line, in faulty situations or in 
maintenance mode, in most cases without interruption of the airport operation; and  
Challenge 4: Multilingual and multicultural support. Airlines systems from different 
nationalities and different cultures must interact with the airport systems, so, the AMS 
should interact with all the airlines systems operating on it. In every season, those 
companies may change. 

6. Building and Evolving AMS with Dynamic Variability 
Considering the inherent characteristics and complexity of AMS and the challenges 
stated in the previous section, we identified the following opportunities where static and 
dynamic variability can play a role for building and maintaining some of the AMS 
subsystems, such as we describe below: 
Variability in Airfield lighting control systems: multivendor solutions integrated in a 
single control system, include lighting control and single lamp fault signaling managed 
in real-time;  
Variability in Weather information system: small airports do not need to calculate the 
parameters like Runway Visual Range (RVR) that might be replaced by a Visibility 
Measurement (VM). Other parameters like wind conditions or temperature are 
mandatory in big airports; 
Variability in Automatic baggage handling system: the implementation of this 
system varies from a really simple distribution system, to complex systems with 
kilometers of installations and interfaces with many other systems, like fire detection or 
security systems; and  
Variability in Airport security system:  the security system may vary from a simple 
CCTV with a simple intrusion detection system in littlest airports, to really complex 
systems in wider airports, integrating thousands of cameras, thousands of sensors of any 
kind, and interfacing with many other systems in the airport or external to the airport.  

6.1 Context-variability for AMS 
Because many of the variations of these subsystems depend on sensor that analyze 
context information at real-time, we adopt one of the strategy to model AMS context 
properties using context variability techniques. As the large number of subsystems may 
complicate to model all the variability at the same time, we preferred to adopt a strategy 
focused on reuse, where context features are modeled using separated feature sub-trees 
and in the case a subsystem or part of it is replaced by a more modern one, the context 
variability sub-tree of that subsystem can be easily replaced in the feature model. 
In Figure 1, we describe a layered reference architecture for AMS where we describe 
the organization of the subsystems mentioned and where dynamic variability can be 
used to managed the context properties of all these systems. Our approach uses a 
context variability model to describe both context and non context features (right side of 
Figure 1) but because the variability model is large, we only represent a subset of it. We 
adopted the strategy to have different branches in the feature model to discriminate 
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between context and non-context features because of the following reasons: (i) non 
context features in AMS are more stable; (ii) a separate context feature sub-tree is more 
reusable in case we need to replace one of the subsystems; and (iii) context features that 
can modify the structural variability at runtime are easily to anchor in the feature tree 
under the right subsystem in case we need to add or remove features dynamically. By 
contrary, having two separate feature sub-trees for each subsystem may add more 
dependencies between features of each different subsystem.  

 
Figure 1: Excerpt of the reference architecture of an Airport Management System (left side) and a subset 
of the context variability to model (right side) that describes context and non-context features and those 
that modify the structural variability at runtime (dotted lines).  

6.2 Dynamic evolution of context variability  
AMS have strong real-time requirements and runtime reconfiguration needs that require 
a different treatment from the evolution point of view. For instance, new features in the 
weather information system could be added at runtime through specific middleware. 
This could be the case that an AMS will need to incorporate an insolation sensor aimed 
to measure the amount of solar radiation energy received on a runaway. New context 
features could be added or removed dynamically in the feature model, having an clear 
impact on the structural variability of the AMS. Consequently, the evolution of the 
variability of these systems and subsystems can be managed using dynamic variability 
techniques such as those suggested in a previous work [Bosch 2012], and using the 
notion of super-types (i.e., a taxonomy to group features under a common functionality) 
to add and remove features at runtime. These dynamic variability techniques in 
combination with context features can reduce human intervention during critical AMS 
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maintenance, as certain subsystems can be plugged into the AMS middleware at 
execution time.  

7. Conclusions 
The inherent complexity of SoS like AMS, which are composed by a wide range of 
systems and subsystems that must run coordinately at runtime, complicates the 
deployment and evolution of such systems. In this scenario, context variability and 
dynamic variability techniques, such as proposed in this work, become suitable for 
dealing better with the evolution of unforeseen situations and for modeling the 
variability and the diversity of scenarios that SoS must deal with. In this work, we have 
presented challenges and suggested opportunities for applying dynamic variability in the 
construction and maintenance of AMS. For the future work, we intend to get more 
evidence about the viability of applying dynamic variability to more efficiently control 
the construction of reconfigurable SoS, in the case, an AMS, and evolution of critical 
operations of such system. 
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