

Towards the Dynamic Evolution of Context-based
Systems-of-Systems

Elisa Yumi Nakagawa1, Rafael Capilla2, Francisco J. Díaz3, and Flávio Oquendo4

1University of São Paulo – USP, São Carlos, Brazil

 2University Rey Juan Carlos – URJC, Madrid, Spain

3Ingeniería y Economía del Transporte – INECO, Madrid, Spain

4IRISA - University of South Brittany – USB, Vannes, France
elisa@icmc.usp.br, rafael.capilla@urjc.es,

fjdiaz@ineco.com, flavio.oquendo@irisa.fr

Abstract. Systems engineering has invested considerable efforts in the
development of complex-large systems, often known as Systems-of-Systems
(SoS). However, the systematization of current engineering practices based on
the inherent complexity and size of these systems is still challenging for
software engineers. In this light we focus in this paper on the evolution aspects
of SoS using dynamic variability techniques. We suggest paths where runtime
variability mechanisms can help to manage the evolution of such complex-
large systems.

1. Introduction
The discipline of Systems Engineering is considered an interdisciplinary field focused
on the design and management of large-scale systems [Sage 2000]. Systems engineering
deals with all those organizational and technical disciplines where a complex system is
considered and integrated as a whole. System engineering overlaps with other technical
and human-centered disciplines (e.g., control engineering, project management,
industrial engineering or mechatronics) aimed to produce and manage complex software
systems. Nowadays, the genesis and development of large Ultra-Large-Scale (ULS)
systems [Northrop 2006] perceived as a System-of-Systems (SoS) bring many
challenges from its conception to its maintenance and evolution.
SoS encompasses the integration of various operationally independent systems, even
developed with different technologies and for diverse platforms. An adequate
integration has been more and more necessary to promote cooperation among these
independent systems in order to provide more complex functions, which could not be
provided by any system working separately [Maier 1998]. One important challenge for
SoS development refers to its evolutionary development. Complex systems that exploit
context-awareness and modify their behavior at runtime demand more complex
maintenance procedures. As functions and purposes of SoS can change at runtime and

WDES

45

new constituents can be reassembled to perform a different mission, the challenge for
adaptive behavior in SoS demands specific solutions.
In this scenario, this paper discusses about SoS evolution. In particular, we focus on
addressing how dynamic variability techniques can support the evolution of such
complex systems. The remainder of this paper is as follows. In Section 2 we
characterize SoS from an architectural point of view. Section 3 discusses the evolution
and needs of SoS that demand dynamic adaptation and Section 4 motivates the role of
dynamic variability as key for the evolution of SoS. In Section 5 we outline the
application domain of Airport Management Systems and in Section 6 we suggest how
dynamic variability can help to develop and evolve better such large-scale systems.
Finally, in Section 7 we draw our conclusions and future work.

2. SoS Characterization
An SoS is constituted of various operational and managerially independent,
heterogeneous constituents interoperating and complying with a larger mission [DoD
2008]. Several examples of SoS can be identified; for instance, a medical system
integrating systems to diagnosis, treatment, and management of patients, airport system,
and avionics system, including several of them characterized as critical embedded
systems.
Two main characteristics are directly related to the constituent systems of an SoS: (i)
Operational independence: each constituent can deliver its own functionalities when not
working with other constituents; and (ii) Managerial independence: constituents keep
their own managerial sphere, being sometimes developed by diverse companies or other
institutions. In addition, considering the whole SoS, four characteristics are inherent: (i)
Emergent behavior: SoS can deliver new functionalities resulting from constituents
working together; (ii) Evolutionary development: functions and purposes of SoS can
dynamically change at runtime; (iii) Geographic distribution: constituents of an SoS can
be geographically distributed; and (iv) Runtime architecture: a new organization of the
constituents is sometimes necessary in order to comply with the SoS evolution. As
result of these characteristics, SoS becomes naturally unpredictable regarding to what
can happen during their execution. Moreover, unpredictability also characterizes the
environment where a SoS is being executed. Moreover, software essentially influences
the design, construction, deployment, execution, and even evolution of SoS. Therefore,
the backbone of the characteristics of both the constituents and the whole SoS is the
software-intensivity.
Considering the rise of software-intensive SoS and intending to systematize their
development, several initiatives from Software Engineering area can be identified. Both
academy and industry have invested efforts in that direction; however, in general, these
initiatives need still to be more experimented and matured. From the SoS software
architecture perspective, it is also required more research efforts. Software architectures
promote quality attributes, mainly interoperability, adaptability, security, reliability, and
performance, considered most relevant ones for SoS [Nakagawa 2013]. There are also
challenges that need be overcome, including the investigation and establishment of
approaches to create, represent, evaluate, and especially evolve these architectures.
Specifically, these architectures must be also prepared to support dynamic evolution, as

WDES

46

evolution has sometimes occurred without adequate, systematic control, resulting in
degradation of their quality.

3. SoS Evolution Challenges
Managing the complexity of SoS is not easy, demanding complex organizational
procedures. Several modern systems use context information to more efficiently
perform the possible variations and adaptation of their complex operations, which
require changes in their behavior. As the evolution of SoS is naturally a challenging,
complex task, SoS should optimally and adaptively manage the information and
resources according to varying context conditions (e.g., smart cities, intelligent
transportation, wireless sensors, or warfighter systems).
Viewing SoS as a software product line where many systems can interoperate to achieve
the desired functionality facilitates the development, evolution, and management of
SoS. As the variety of SoS can be huge, we will focus on this work on those systems
that require adaptive behavior and where the integration of complex technologies and
platforms demand a significant degree of systems engineering activities. From this
perspective, we state the following challenges focused in the SoS evolution:
Smart and runtime adaptation and reconfiguration: SoS with adaptive and
autonomous behavior should provide mechanisms to change their behavior at runtime
with minimal or none human intervention. Reconfiguration at runtime can be possible if
the solution provided is feasible and performed in many cases under strict timing
requirements;
Dynamic selection of choices: Many autonomous systems need to optimally make
runtime decisions. Hence, variability management at runtime is still a challenging task
for unforeseen scenarios;
Runtime management: The possibility of many critical complex systems to change
from one operational mode to another demands mechanisms where the system variants
can change at post-deployment time;
Awareness of runtime decisions: Software designers should be aware of which
runtime changes can affect to critical parts of the architecture. Consequently, there is a
strong need to notify the relevant stakeholders about critical runtime changes; and
Ripple effect of runtime decisions: As safety and reliability are important design
concerns, critical decisions made by an autonomous behavior may impact on other
critical parts of a complex system. Hence, we need solutions to track on the possible
deviations of the normal system’s operational mode when a change may cause damage
on other parts of the system.

4. The Role of Dynamic Variability

Software product lines have proven as a successful technique for building families of
related systems, often with a high degree of complexity. The evolution of a product line
is achieved on behalf of software variability techniques [Capilla 2013], which maximize
reuse and manage efficiently the variations of their family members. However, when
complex systems demand runtime solutions able to manage the variations of systems

WDES

47

dynamically, runtime variability becomes a relevant technique. Because managing the
variations at runtime is still in the infancy, the emerging parading of Dynamic Software
Product Lines (DSPLs) [Hinchey 2012] aims to manage the variations of systems at
execution time. In this regard we discuss in this section those DSPL techniques that can
be suitable for development and evolution of SoS systems that exploit context-
awareness and runtime behavior.

Context-aware properties are the base to exploit runtime adaptation in many complex
systems. The evolution of SoS can be achieved better modeling the contextual
information using variability techniques. This contextual information of SoS that must
be managed at runtime enhances the behavior of the system and supports better the
evolution for unforeseen scenarios, as new functionality could be added, removed, or
changed dynamically. In addition, system dynamics is an approach of systems
engineering aimed to understand the behavior of complex systems over time. However,
one step beyond on simulation of the behavior of complex systems refers to those
solutions that can anticipate system changes at runtime. From a previous work we stated
the challenge for managing runtime variability [Capilla 2011] as a promising solution to
evolve SoS and which techniques can be suitable to model, change, and optimize the
variations that happen when the behavior changes [Capilla 2014]. Consequently,
runtime variability proves as a suitable technique for those SoS that demand adaptive
and sometimes unpredictable behavior during execution time. In next section we discuss
potential solutions at the architectural level for SoS that use context information and
demand runtime adaptation in order to address the evolution challenges described in
Section 3.

5. Airport Management Systems
Regarding the research methodology, in this preliminary work, we did an informal
analysis of the target application domain based on the long experience of one of the co-
authors. We did not performed an exploratory case study [Robson, 2002; Runeson
2009] or more formal analysis, as in this position paper we only wanted to state the
main key areas where SoS development can be enhanced with dynamic variability
techniques for the development of complex critical systems. In this light, one important
domain suitable for SoS is the case of Airport Management Systems (AMS), which
encompasses the automation of airport procedures in various areas, such as information
systems, control and computerized remote controls, computer equipment, billing,
baggage handling, security, weather information, controls signaling, and allocation of
airport facilities, among others. All these key areas must work and cooperate in a
coordinate and synchronized manner to handle the normal airport’s operations and
reduce human intervention. At present, the trend is to achieve maximum integration to
maximize coordination and usage of resources and integrate middleware from different
vendors in order to guarantee real-time operations. Consequently, reliability, safety, and
security are major quality concerns addressed by this kind of system, many of them
redundant in the AMS. Some of the subsystems that belong to AMS are the following:
Airfield lighting control systems: this system controls the lighting aids installed on the
airport (runways, taxiways, stop bars, etc.), and in other cases light towers and

WDES

48

obstacles. In small airports this system is often integrated with the power control
system;
Weather information system: it is the responsible for acquiring, processing,
presenting, recording, and disseminating information on the prevailing weather
conditions at the airport and is vital for normal airport’s operations. This system
computes parameters extracted from a variety of sensors, such as wind speed and
direction, atmospheric pressure, rainfall and humidity detection, and it can compute
complex measures such as the Runway Visual Range (RVR);
Automatic baggage handling system: this system results key for the operation of large
airports as it depends of the number of passengers and the season where passengers
travel. It encompasses other subsystems that perform different functions with the
luggage (e.g., billing, transportation, security, classification, etc.) and is considered one
of the most cost-consuming systems in large airports; and
Airport security system: the aim of this system is to manage a wide variety of
subsystems and services to control intrusion detection and the inner perimeter using
CCTV cameras, access control, and fire detection sensors. Various security groups are
associated to different roles and stakeholders.
Other systems belonging to the AMS are: the electrical control system to ensure an
uninterrupted power supply using a large variety of sensors and analyzers, the
allocation of airport resources system, which uses large databases and real-time
information to allocate resources, and the standard communication system, which
interconnects basic services and all voice, radio, and internet communications. Many
other airport facilities can be integrated under the AMS, such as tunnel control system,
passenger information system, slot management system, parking control system, airport
GIS, aircraft docking systems, and many more.
As the large variety of subsystems and parameters is sometimes unmanageable for the
many situations that may occur in an airport, the integration and configuration of all
these system is hard. In many situations, the diversity and amount of the data managed
by these subsystems as well as the responses and operations they need to perform
depend on the state of other systems (e.g., a fire detection system can generate
automatic actions on the access control system and the automatic baggage handling
system, activating different alarms outside the airport). Consequently, the variations and
the diversity of runtime scenarios complicate the maintenance and evolution when new
requirements demand changes in the AMS. According to the SoS evolution challenges
described in Section 3, and in order to address the large number of scenarios that may
arise in the airport’s daily operations, we identified the following challenges that AMS
subsystems need to address regarding the dynamic adaptation and reconfiguration
operations:
Challenge 1: Diversity of information sources where much of the information comes
from the environment. As sensors belonging to different subsystems determine the
airport configuration in real time, the AMS should provide a way to integrate all the
information and distribute it to the implied stakeholders;
Challenge 2: Growing number of mobile employees that often use location services.
The AMS should manage such diversity of information, aiming to exchange important
data among systems and users in raw or cooked format, even outside the airport;

WDES

49

Challenge 3: Dynamic reconfiguration of systems that must be adapted to unforeseen
situations. The huge number of interfacing systems and the kind of data they share
becomes a problem to solve in case a system becomes off-line, in faulty situations or in
maintenance mode, in most cases without interruption of the airport operation; and
Challenge 4: Multilingual and multicultural support. Airlines systems from different
nationalities and different cultures must interact with the airport systems, so, the AMS
should interact with all the airlines systems operating on it. In every season, those
companies may change.

6. Building and Evolving AMS with Dynamic Variability
Considering the inherent characteristics and complexity of AMS and the challenges
stated in the previous section, we identified the following opportunities where static and
dynamic variability can play a role for building and maintaining some of the AMS
subsystems, such as we describe below:
Variability in Airfield lighting control systems: multivendor solutions integrated in a
single control system, include lighting control and single lamp fault signaling managed
in real-time;
Variability in Weather information system: small airports do not need to calculate the
parameters like Runway Visual Range (RVR) that might be replaced by a Visibility
Measurement (VM). Other parameters like wind conditions or temperature are
mandatory in big airports;
Variability in Automatic baggage handling system: the implementation of this
system varies from a really simple distribution system, to complex systems with
kilometers of installations and interfaces with many other systems, like fire detection or
security systems; and
Variability in Airport security system: the security system may vary from a simple
CCTV with a simple intrusion detection system in littlest airports, to really complex
systems in wider airports, integrating thousands of cameras, thousands of sensors of any
kind, and interfacing with many other systems in the airport or external to the airport.

6.1 Context-variability for AMS
Because many of the variations of these subsystems depend on sensor that analyze
context information at real-time, we adopt one of the strategy to model AMS context
properties using context variability techniques. As the large number of subsystems may
complicate to model all the variability at the same time, we preferred to adopt a strategy
focused on reuse, where context features are modeled using separated feature sub-trees
and in the case a subsystem or part of it is replaced by a more modern one, the context
variability sub-tree of that subsystem can be easily replaced in the feature model.
In Figure 1, we describe a layered reference architecture for AMS where we describe
the organization of the subsystems mentioned and where dynamic variability can be
used to managed the context properties of all these systems. Our approach uses a
context variability model to describe both context and non context features (right side of
Figure 1) but because the variability model is large, we only represent a subset of it. We
adopted the strategy to have different branches in the feature model to discriminate

WDES

50

between context and non-context features because of the following reasons: (i) non
context features in AMS are more stable; (ii) a separate context feature sub-tree is more
reusable in case we need to replace one of the subsystems; and (iii) context features that
can modify the structural variability at runtime are easily to anchor in the feature tree
under the right subsystem in case we need to add or remove features dynamically. By
contrary, having two separate feature sub-trees for each subsystem may add more
dependencies between features of each different subsystem.

Figure 1: Excerpt of the reference architecture of an Airport Management System (left side) and a subset
of the context variability to model (right side) that describes context and non-context features and those
that modify the structural variability at runtime (dotted lines).

6.2 Dynamic evolution of context variability
AMS have strong real-time requirements and runtime reconfiguration needs that require
a different treatment from the evolution point of view. For instance, new features in the
weather information system could be added at runtime through specific middleware.
This could be the case that an AMS will need to incorporate an insolation sensor aimed
to measure the amount of solar radiation energy received on a runaway. New context
features could be added or removed dynamically in the feature model, having an clear
impact on the structural variability of the AMS. Consequently, the evolution of the
variability of these systems and subsystems can be managed using dynamic variability
techniques such as those suggested in a previous work [Bosch 2012], and using the
notion of super-types (i.e., a taxonomy to group features under a common functionality)
to add and remove features at runtime. These dynamic variability techniques in
combination with context features can reduce human intervention during critical AMS

WDES

51

maintenance, as certain subsystems can be plugged into the AMS middleware at
execution time.

7. Conclusions
The inherent complexity of SoS like AMS, which are composed by a wide range of
systems and subsystems that must run coordinately at runtime, complicates the
deployment and evolution of such systems. In this scenario, context variability and
dynamic variability techniques, such as proposed in this work, become suitable for
dealing better with the evolution of unforeseen situations and for modeling the
variability and the diversity of scenarios that SoS must deal with. In this work, we have
presented challenges and suggested opportunities for applying dynamic variability in the
construction and maintenance of AMS. For the future work, we intend to get more
evidence about the viability of applying dynamic variability to more efficiently control
the construction of reconfigurable SoS, in the case, an AMS, and evolution of critical
operations of such system.

References
Bosch, J., Capilla, R. (2012) Dynamic Variability in Software-Intensive Embedded

System Families. IEEE Computer 45(10): 28-35.
Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortés, A., Hinchey, M. (2014) An Overview

of Dynamic Software Product Line Architectures and Techniques: Observations from
Research and Industry, Journal of Systems and Software 91(5), 3-23.

Capilla, R., Bosch, J., Kang, K-C. (2013) Systems and Software Variability
Management, Concepts, Tools and Experiences, Springer.

Capilla, R., Bosch, J. (2011) The Promise and Challenge of Runtime Variability, IEEE
Software 44(12), 93-95.

DoD. (2008) System Engineering Guide for Systems of Systems. Office of the Deputy
Under Secretary of Defense for Acquisition and Technology, Systems and Software
Engineering, Version 1.0.

Hinchey, M., Park, S., Schmid, K. (2012) Building Dynamic Software Product Lines,
IEEE Computer 45(10), 22-26.

Maier, M. W. (1998). Architecting principles for systems-of-systems. Systems
Engineering, 1, 4, 267-284.

Nakagawa, E. Y., et al. (2013) The State of the Art and Future Perspectives in Systems
of Systems Software Architectures, In SESoS’13, Montpellier, France, 13-20.

Northrop, L., et al. (2006) Ultra-Large-Scale Systems: The Software Challenge of the
Feature, Software Engineering Institute, Carnegie Mellon, Pittsburgh, USA.

Robson,C. (2002) Real World Research. Blackwell (2nd Ed.)
Runeson, P., Höst, M. (2009) Guidelines for conducting and reporting case study

research in software engineering, Empirical Software Engineering Journal 14(2),
131-164

Sage, A. P., Armstrong, J. E. (2000) Introduction to Systems Engineering, Wiley Series.

WDES

52

