
Towards Architectural Synthesis of Systems-of-Systems
Marcelo B. Gonçalves1,2, Flavio Oquendo2, Elisa Y. Nakagawa1

1ICMC, University of São Paulo, São Carlos, Brazil
2IRISA-UMR CNRS/Université de Bretagne-Sud, Vannes, France

{marcelob,elisa}@icmc.usp.br, flavio.oquendo@irisa.fr

Abstract. A System-of-Systems (SoS) is the result of constituent systems inter-
operating to achieve common goals. This emerging class of systems brings new
development challenges, especially for the design of their software architectures.
Despite architectural synthesis is a relevant activity in the architectural process
with impact in the quality of software architectures, current software engineer-
ing approaches do not properly address it in the context of SoS. To address this
lack, the main contribution of this work is to present SASI (SoS Architectural
SynthesIs), a method to support architectural synthesis in SoS software architec-
tures. Besides introducing the main elements of SASI, this paper reports results
of a study aimed to assess the feasibility of the proposed method.

Resumo. Um Sistema-de-Sistemas resulta de sistemas constituintes inter-
operando para alcançar objetivos comuns. Essa nova classe de sistemas traz de-
safios de desenvolvimento, especialmente em seu design arquitetural. A despeito
da síntese arquitetural ser uma atividade importante no processo arquitetural,
com impacto na qualidade das arquiteturas resultantes, as abordagens atuais
não tratam adequadamente essa atividade no contexto de sistema-de-sistemas.
A fim de tratar essa lacuna, a contribuição principal deste trabalho é a in-
trodução do SASI, um método para oferecer suporte à síntese arquitetural em
arquiteturas de software de sistemas-de-sistemas. Além de introduzir os princi-
pais elementos dessa proposta, este artigo reporta resultados de um estudo de
viabilidade realizado para o método proposto.

1. Introduction
In the last years, it has been possible to notice an increasing interest in the research
and development of Systems-of-Systems (SoS), a class of complex systems that stems
from the interaction among distributed, heterogeneous, and independent constituent sys-
tems that interoperate to form a larger, more complex system for accomplishing global
missions [Maier 1998]. The result of such a collaborative work is said to be more than
the sum of the constituent systems as it enables the SoS to offer new functionalities,
i.e., an emergent behavior that cannot be provided by these constituents individually
[Boardman and Sauser 2006].

SoS have followed the natural trend of complex, large-scale systems becom-
ing more software-dependent, leading to the so-called software-intensive SoS1, i.e., SoS
in which software plays an essential role in their design, development, and evolution
[Gonçalves et al. 2014]. As for any software-intensive system, software architectures

1For the sake of simplicity, software-intensive SoS are hereinafter referred as SoS.

25

have been regarded as a significant element for determining the success of such systems
and taming their complexity, while contributing to the achievement of important qual-
ity requirements such as interoperability and performance. In the SoS context, software
architectures must be able to address the inherent characteristics of SoS, encompass the
organization of constituent systems, and deal with a dynamic and evolutionary context.

Within the construction of software architectures, the architectural synthesis aims
to design architectural solutions in order to meet the requirements upon the system that
directly influence their architecture, the so-called architecturally significant requirements
[Hofmeister et al. 2007]. Despite the relevance of this step as a driver for the system im-
plementation, existing approaches in the literature do not properly address architectural
synthesis in the SoS context, being typically concerned with systems engineering and
high-level aspects of SoS architectural development. In addition, it is necessary to reason
which are the fundamental elements for the architectural synthesis in the development of
SoS software architectures.

Aiming at tackling these issues, this paper presents SASI (SoS Architectural Syn-
thesis), a method for establishing and managing architectural solutions in acknowledged
SoS, in which goals, resources, and authority are all recognized at SoS level, but the
constituent systems retain their independent management and the behavior is not sub-
ordinated to the central managed purpose [DoD 2008]. SASI was conceived to provide
guidelines on what must be done in the construction of acknowledged SoS software ar-
chitectures and support how to perform the required activities for architectural synthesis
in any application domain. In order to assess the feasibility of our proposal, we conducted
an observational study with six participants. The obtained results contributed to improve
SASI and to verify its applicability and independence in terms of application domain.

The remainder of this paper is structured as follows. Section 2 introduces the is-
sues related to the architectural synthesis of SoS software architectures. Section 3 presents
our proposal to support this activity. Section 4 presents the evaluation concerning our pro-
posal. Finally, Section 5 outlines some conclusions and directions to future work.

2. Architectural Synthesis of SoS
According to the general model of architectural design proposed by Hofmeister et al.
[Hofmeister et al. 2007], the major activities on building any software architecture are
(i) architectural analysis, (ii) architectural synthesis, and (iii) architectural evaluation. In
the architectural analysis, architecturally significant requirements are elicited expressing
which problems in the system context the software architecture can solve. In turn, the
architectural synthesis encompasses the design and proposition of candidate architectural
solutions in order to effectively solve the architecturally significant requirements, mov-
ing from the problem to the solution space. Finally, the architectural evaluation aims at
evaluating the proposed architectural solutions against the architecturally significant re-
quirements. In order to verify if the design decisions made are the right ones.

Despite the existence of approaches covering the synthesis of software architec-
tures, the class of SoS reaches a complexity threshold in which traditional software en-
gineering is no longer sufficiently adequate [Boehm and Lane 2006]. Due the inherent
characteristics of SoS, they software architecture differ from a monolithic systems on
several issues, such as the communication involving multiple stakeholders and organi-

26

zations, evolutionary development, dynamism in an operational environment based on
emergent behaviors [DoD 2008]. As a result, SoS software architectures have been con-
structed through ad-hoc perspectives in which each SoS has its software architecture de-
veloped on a particular manner. Therefore, there is a lack of further investigations on the
systematic development of SoS software architectures (and more specifically on the archi-
tectural synthesis) in order to improve the available solutions to support the architectural
development of these architectures.

Due the independence of constituent systems, SoS software architectures are in-
herently dynamic. Moreover, emergent behaviors result from the collaborative work of
constituent systems and these systems are not totally subordinated to SoS interests. There-
fore, the architectural solutions must consider the relevance of self-organization concerns
and prediction of both desired and undesired emergent behaviors. In general, desirable
behaviors come from architectural solutions and must be maximized since they foster the
accomplishment of SoS missions. On the other hand, undesirable behaviors must be min-
imized because they may negatively affect the accomplishment of SoS missions and/or
important quality attributes such as performance, security, and reliability.

3. SASI: A Method for Architectural Synthesis of SoS
SASI, our method to support architectural synthesis of acknowledged SoS, is struc-
tured upon the OMG’s Essence Standard2, which comprises a language for method
authoring and a kernel designed to be a reference for software development projects
[Jacobson et al. 2013]. With the Essence Language, it is possible to instantiate processes
by using kernels and practices: kernels provide conceptual grounding and guidelines to
“what must be done” whereas practices provide elements such as specific activities and
work products determining the “how to do”. Our previous work [Gonçalves et al. 2015]
proposed the SoS SA Kernel, a kernel that adheres to the Essence Kernel for determining
the “what must be done” in the construction of acknowledged SoS software architectures,
independently from application domains, work products, and organizational contexts. We
have taken advantage of SoS SA Kernel when conceiving SASI in order to support project
teams on the instantiation or improvement of their own development processes targeting
acknowledged SoS.

The main elements borrowed from the Essence Language and employed in the
representation of SASI are alphas, work products, activity spaces, and activities. Alphas
determine the “things to work with” of methods and have a set of progression states ver-
ified through checklists. Changes in these states indicate work progress and can help de-
velopment teams to understand their own way of working. A work product is an artifact
that concretely represents an alpha, e.g., a document or a code slice. Activity Spaces de-
termine the “what must be done” in development projects and activities define approaches
to accomplish activity spaces by providing guidelines on how to work with alphas when
following a given method. Figure 1 shows the main workflow of SASI for architectural
synthesis. Next subsections detail the main elements of the method.

3.1. SASI Work Products
In our previous work [Gonçalves et al. 2015], several alphas were established in order to
encompass all the “things to work with” when architecting acknowledged SoS. Follow-

2Essence Standard is avaiable at <http://www.omg.org/spec/Essence/>

27

Prepare to
do the Work

Proposing a new
Architectural Version

1. Planning
Synthesis

Managing
Architectural Backlog

4a. Coordinating
Distributed
Synthesis

Coordinate
Activity

4. Conceiving CASs

Proposing a new
Architectural Version

3. Selecting ASRs
to Design

6. Predicting
Emergent Behaviors

Proposing a new
Architectural Version

Managing
Architectural

Representation

7. Building
Architectural

Documentation

Method Input

Managing
Architectural Backlog

2.Checking
Architectural Backlog

4b. Updating
Architectural Backlog

new Architectural
version is proposed to
be further evaluated

ASRs
Elicitation

was performed

Method Output

Activity Space Activity Work Product Main flow Secondary flow Information flow Concerns
 Solution Endeavor

Backlog
Documentation

ASRs
Documentation

SoS Software
Architecture

Documentation

Backlog
Documentation

Proposing a new
Architectural Version

5. Handling
Evolution

Figure 1. SASI workflow.

ing, we describe the work products introduced by SASI that might express these alphas
considering only the perspective of architectural synthesis.

Architectural Backlog Documentation. The Architectural Backlog encompasses
any relevant matter related to the architecture and it can be updated at any time in the
life cycle. In this context, the Architectural Backlog documentation must comprise the
knowledge to guide the architectural development, including issues such as the prioriti-
zation of architectural requirements, feedback of problems found during the architectural
evaluation, and registration of new ideas for viability analysis in further iterations.

Architecturally Significant Requirements (ASRs) Documentation. An ASR is
any functional or non-functional requirement relevant for the SoS software architecture
and therefore drives the architectural design. In the SoS context, ASRs are often related
to quality attributes, missions, constraints, and requirements derived from environmental
conditions. As a recommended work product, the ASRs documentation is obtained after
agreement through different stakeholders to be further handled by the architecture, in-
cluding, for example, a quality model created to provide specific metrics and constraints
for relevant quality attributes in SoS such as interoperability, security, and performance.
Furthermore, despite we do not expect all ASRs to be known a priori, the ASRs elicitation
is a precondition to perform architectural synthesis.

SoS Software Architecture Documentation. The architectural documentation is
proposed to explicity express, support evaluation, and convey an SoS software architec-
ture. Therefore, it must provide elements required to adequately express the architecture

28

of the system, such as architectural viewpoints and views, or architectural prototypes.
Moreover, it can be made with different representation techniques (informal, semi-formal,
and formal) and must cover the different views (e.g., structural and behavioral) to provide
a better understanding of the system architecture to both stakeholders and developers.

3.2. SASI Activities

Following, we present the activities defined in SASI.

1. Planning Synthesis. This activity deals with the establishment/update of plan-
ning issues concerning the execution of synthesis activities. It includes scheduling time
and resources, e.g., the establishment and management of the team and its way of working
with stakeholders and other project teams, as well as the review of previous iterations in
order to maintain the architectural design as expected.

2. Checking Architectural Backlog. This activity refers to the strategic checking
of the Architectural Backlog, which can be used as information source to support archi-
tectural activities.

3. Selecting ASRs to Design. This activity is about the decision and establishment
of what must be designed in each synthesis iteration based on the set of ASRs to be
handled. Several factors can influence the decision about the how many ASRs will be
included, such as the diversity of application domains, the architects expertise in these
domains, and the teams size.

4. Conceiving Candidate Architectural Solutions (CASs). In this activity, a set of
CASs is proposed to encompass the ASRs under design, thus meeting a set of ASRs and
establishing a new architectural version to be further evaluated. The CASs can be created
based on several different sources, such as a background on building similar architec-
tures, frameworks, design checklists, domain decomposition, reference architectures, and
architectural patterns [Bass et al. 2012].

5. Coordinating Distributed Synthesis. SoS development typically involves dif-
ferent organizations performing a collaborative, distributed development of the software
architecture. This activity space must encompass the required support for such a collabo-
rative work through heterogeneous teams. In this sense, it encompasses the management
of the distributed work to be performed as expected, e.g., negotiation of authority levels
and communication strategies.

6. Updating Architectural Backlog. This activity space encompasses registering
and maintaining inter-dependencies, trade-offs, changes, traceability links, as well as any
other relevant information regarding the performed synthesis.

7. Handling Evolution. Evolvability is the ability to easily accommodate future
changes. This attribute is highly required in SoS scenarios since the architecture is con-
stantly evolving. In this context, this activity determines the investigation and establish-
ment of strategies to maintain the SoS evolvability. Since CASs must be established by
considering the evolvability concern, this activity dialogues with the Conceiving CASs
influencing in the proposed architectural version.

8. Predicting Emergent Behaviors: Emergent behaviors of an SoS are not simply
a sum of parts (i.e., constituent systems and their capabilities) and an effort must be di-

29

rected trying to predict it also considering the identification of both desired and undesired
behaviors. Despite the management of these behaviors includes other phases of archi-
tectural construction (i.e., architectural analysis and evaluation), it is possible to conduct
efforts in the architectural synthesis on how the proposed CASs can promote desired be-
haviors and also the analysis of how behaviors from previous iterations interfere in these
CASs.

9. Building Architectural Documentation. The proposed CASs must be reflected
in assets that allow the further understanding and evaluation of what was proposed. In this
activity, the SoS software architecture is described according to the development context
of each SoS, thus considering different interests, viewpoints, and particular environments.
Moreover, it must provide a documentation that reflects the current SoS software archi-
tecture and also a way to convey the SoS software architecture that reaches all interested
stakeholders and developers.

4. Evaluation
Aiming to assess the feasibility of applying SASI to generate method instances for SoS
in any application domain, we conducted a study with six graduate students from the
University of São Paulo during the Fall 2015 semester. A secondary goal was to receive
feedback on the format and contents of the SASI description, which was used to make
enhancements in SASI. In this context, the study has concentrated on the identification of
SASI elements to conceive a method instance for a particular SoS context and the ability
of understanding such elements on any SoS application domain.

The materials used during this study consisted of (i) the initial version of SASI
description in the Essence Language, (ii) descriptions of two SoS inn different application
domains, and (iii) a form to be filled by the subjects. Participants first received a training
on SASI and then they were grouped into two teams. Each team received a different
system description and each subject tried to compose a method instance by identifying
which SASI elements (activities, alphas and work products) would be required to establish
a method for architectural synthesis considering the provided SoS description. Moreover,
the subjects had to justify why not included a given activity and to point out the alpha
states before and after the architectural synthesis.

In order to verify if the method instances were as expected, they were compared
to templates including all the adequate SASI elements on each SoS description. Figure 2
summarizes results obtained with the observational study. The quantitative data from this
study showed some positive results, we observed that the instances generated by the sub-
jects achieved a high degree of conformance (i.e., all evaluation averages reached at least
65% of conformance) to the templates and the conformance reached by the two teams
was similar. In this context, we concluded that it was possible to generate instances of
architectural synthesis methods on specific development contexts by using SASI, in spite
of its generality regarding application domains.

Qualitative data also provided us with some lessons to enhance SASI. Subjects
were questioned about their personal usage experience with SASI and asked for provid-
ing additional comments and enhancement suggestions. The main suggestions provided
by the experts and further incorporated into SASI were, (i) more details about the rela-
tionships among activities and (ii) offering a template for the Architectural Backlog and

30

ASRs documentation as means of enhancing the guidelines concerning which informa-
tion/asset should be registered/updated. In general, we consider that the results of this
study represent a good indicative that SASI can be an adequate, comprehensive method
for supporting architectural synthesis in acknowledged SoS software architectures.

Figure 2. Conformace with templates.

4.1. Threats to Validity

The conducted study and its results may have been affected by some threats to empirical
validity. Following, we briefly discuss some of these limitations.

Internal Validity. Internal validity is mainly concerned with unknown factors that
may influence the results. To increase the validity of our study regarding this concern, we
carefully designed, piloted, and iteratively refined the form and documentation provided
to the subjects. Additionally, we made the participation voluntary and anonymous.

External Validity. External validity is related to claims for the generality of the
presented results. In this context, we believe that the number of participants can be ac-
cepted since our main goal was to observe the results of using SASI and gain insights and
suggestions for improving it.

Construct Validity. Construct validity focuses on the correct interpretation and
measurement of the perceptions, i.e., the relationship between concepts and theories be-
hind the study and what is actually measured and affected. We attempted to mitigate most
of bias coming from the subjects by structuring a significant part of the form to drive
the use of SASI in a particular SoS context. Furthermore, since enhancement suggestions
could yield different interpretations, answers to these questions and consequent improve-
ments were discussed among the researchers.

5. Conclusions
Despite the growing presence of SoS in several application domains and societal sectors,
there are no standard processes or consensual practices regarding the construction of SoS
software architectures. For this reason, important investigations still remain not addressed,
such as the architectural synthesis on SoS software architectures. To fulfill this gap, the
main contribution of this work is to propose a method to support this activity in acknowl-
edged SoS context. We evaluated the feasibility of SASI in an study which shown good
results on generating specific method instances with SASI.

Taking in account the relevance of adequate synthesis for architectural construc-
tion in SoS scenarios, future work will encompass a deeper investigation on the appli-
cation of SASI in industry. In this context, we also intend to investigate and propose

31

methods for the other major activities of architectural design, i.e., architectural analysis
and architectural evaluation.

References
Bass, L., Clements, P., and Kazman, R. (2012). Software Architecture in practice.

Addison-Wesley, USA, 3rd edition.

Boardman, J. and Sauser, B. (2006). System of systems – The meaning of of . In Pro-
ceedings of the 2006 IEEE/SMC International Conference on System of Systems Engi-
neering, Piscataway, NJ, USA. IEEE.

Boehm, B. and Lane, J. (2006). 21st century processes for acquiring 21st century
software-intensive systems of systems. Journal of Defense Software Engineering,
19(5):4–9.

DoD (2008). Systems Engineering Guide for Systems of Systems. Office of the Deputy
Under Secretary of Defense for Acquisition and Technology, Systems and Software
Engineering, Washington, DC, USA. Version 1.0.

Gonçalves, M. B., Cavalcante, E., Batista, T., Oquendo, F., and Nakagawa, E. Y. (2014).
Towards a conceptual model for software-intensive system-of-systems. In Proceedings
of the IEEE International Conference on Systems, Man, and Cybernetics, pages 1605–
1610, Washington, DC, USA. IEEE Computer Society.

Gonçalves, M. B., Oquendo, F., and Nakagawa, E. Y. (2015). A meta-process to construct
SoS software architectures. In Proceedings of the 30th ACM/SIGAPP Symposium on
Applied Computing, pages 1411–1416, New York, NY, USA. ACM.

Hofmeister, C., Kruchten, P., Nord, R. L., Obbink, H., Ran, A., and America, P. (2007). A
general model of software architecture design derived from five industrial approaches.
Journal of Systems and Software, 80(1):106–126.

Jacobson, I., Ng, P.-W., McMahon, P. E., Spence, I., and Lidman, S. (2013). The Essence
of Software Engineering: Applying the SEMAT Kernel. Addison-Wesley.

Maier, M. W. (1998). Architecting principles for systems-of-systems. Systems Engineer-
ing, 1(4):267–284.

32

