
A Biological Inspiration to Support Emergent Behavior in
Systems-of-Systems Development

Valdemar Vicente Graciano Neto1,2, Elisa Yumi Nakagawa2

1Instituto de Informática (INF/UFG), Universidade Federal de Goiás, Goiânia, Brazil

2ICMC, University of São Paulo, São Carlos, Brazil

valdemarneto@inf.ufg.br, elisa@icmc.usp.br

Abstract. Systems-of-Systems (SoS) are engineered with pre-existing software
called constituents. SoS development requires a new software engineering en-
deavor to address the SoS’ particularities. Computer science has a tradition in
looking for inspiration in biological systems to propose solutions to solve com-
plex problems. Remarkable examples include solutions inspired in ant colonies,
swarm of bees, and neural networks. Recent results have been communicated
regarding a living cell software-based simulation. In that simulation, the entire
life cycle of a living cell is simulated as a function of individual capabilities pro-
vided by individual software modules. Those modules simulate the behavior of
inner structures of a cell. For cells (or simulated cells) and for SoS, independent
parts contribute to deliver a more complex behavior. Then, we investigated how
the similarities between SoS and cells structure, and results from cell simulation
could foster SoS engineering. This paper presents preliminary results of this
research, reporting perceptions we realized between those two research topics,
as well as some insights on how both areas could cross-fertilize each other.

1. Introduction
Systems-of-Systems (SoS) are software-intensive systems constructed with pre-existing
systems called constituents. Those constituents, when working together, can deliver com-
plex behaviors that they could not exhibit if working in isolate. Despite the existence
of successful proposals to integrate such constituents into an operational SoS [Nakagawa
et al. 2014], Software Engineering community has investigated best approaches, prac-
tices, methods, models, and processes to suitably address a forthcoming class of civil
systems [Graciano Neto et al. 2014]. Some examples include Smart Cities, Smart Build-
ings, Smart Grids, and all sort of smart systems composed by other systems and deliv-
ering innovative complex functionalities. On the other hand, bio-inspired solutions have
been explored in the last years for software development initiatives purposes, such as
ant colonies, swarm of bees, neural networks [Dorigo and Birattari 2010, Karaboga et al.
2014,Schmidhuber 2015], and even software ecosystems [Santos et al. 2014b,Jansen and
Cusumano 2012], which are inspired in real ecosystems.

In this direction, recent results reported a successful simulation of an alive cell.
Covert et al. have developed a software-based simulation that integrates several indepen-
dent software modules to emerge a complex emergent functionality: a simulation of a
complete life cycle of an alive cell [Karr et al. 2012, Covert 2014, Matsuoka and Shimizu
2015]. Since simulation is a recurrent paradigm in Systems Engineering guides [Gra-
ciano Neto et al. 2014], and suitable models are still necessary to represent the whole

33



dynamics of large complex smart SoS, we envisioned a possibility of migrating those con-
cepts and results presented by Covert et al. to open a new possible research path regard-
ing SoS development: a bio-inspired SoS development. We understand that this research
topic can be plausible, since other successful bio-inspired initiatives are widespread in
Computer Science.

This paper presents some insights about a cross-fertilization that could be explored
regarding a bio-inspired approach to support SoS development. We expect that these
preliminary discussions can open a new research branch in SoS development, enabling
prominent results from a multidisciplinary research perspective. Remainder of this paper
is structured as follows: Section 2 brings the necessary background to start the discussion,
Section 3 presents the first insights we gathered, Section 4 discusses our preliminary
findings, and Section 5 concludes the paper, presenting remarks and future research.

2. Foundations
Systems-of-Systems (SoS) are an arrangement of software systems called constituents.
Such constituents are pre-existing independent software which contribute with their indi-
vidual functionalities for accomplishing innovative SoS purposes [Boardman and Sauser
2006]. SoS are engineered to articulate their constituents to offer higher-level function-
alities [Nakagawa et al. 2014, Santos et al. 2014a]. Those functionalities emerge as a
synergistic result of constituents’ interoperability. SoS are required to accomplish mis-
sions, a higher goal structured as a set of tasks to be performed by the constituent systems.
Constituents might be unaware of their cooperation and information exchanging in order
to accomplish it. Each constituent system accomplishes its own individual mission and
is able to contribute to the accomplishment of the global mission of the SoS [Silva et al.
2014].

Translating the SoS concept into reality requires a different approach despite the
one currently used to engineer systems [Boardman and Sauser 2006]. Part of such addi-
tional complexity is due to SoS’ inherent characteristics. SoS are distinguished from large
monolithic systems by a set of key ‘dimensions’ postulated by Maier [Maier 1998,Nielsen
et al. 2013, Fitzgerald et al. 2012, Andrews et al. 2013, Pérez et al. 2013]: Operational
independence of constituents and Managerial independence of constituents, emergent be-
havior, and evolutionary development processes (evolution), besides geographical distri-
bution as an essential feature [Board 2014]. Besides Maier’s dimensions, dynamic archi-
tecture, and self-management aspects [Nielsen et al. 2013,Fitzgerald et al. 2012,Andrews
et al. 2013, Weyns and Andersson 2013, Batista 2013, Romay et al. 2013] have been rec-
ognized as inherent and expected characteristics for software-intensive SoS.

When considering SoS engineering, it is important to highlight that constituents
might be monolithic systems, or even other smaller SoS themselves, delivering specific
functionalities which contribute to the larger SoS’ mission. Thus, under this perspec-
tive, SoS can be constituted by subsequently smaller parts, also considered constituents
themselves.

Under another perspective, any product of engineering is based on models, includ-
ing SoS. Independently of the various modeling approaches available, a proper modeling
is useful in a range of areas. Appropriate models helps to realize the systems’ behavior and
reveal the underlying principles of the target real element that is being modeled [Matsuoka

34



and Shimizu 2015]. With such appropriate models, it is possible to simulate real behav-
iors, predicting effects, and supporting necessary calibrations, adaptations, and changes
which can, in an early stage, avoid errors and losses.

One of the frequent models present in computer science are the bio-inspired mod-
els. Among recent initiatives, one is remarkable: a living cell simulation [Karr et al.
2012,Freddolino and Tavazoie 2012,Covert 2014,Matsuoka and Shimizu 2015]. Markus
W. Covert, a bioengineer, developed a well-succeeded simulation of a living cell. Authors
developed a sort of software models and modules representing, each one, a particular
cellular inner process, such as DNA processing, RNA transcription, and cell division,
originating a new cell [Karr et al. 2012, Covert 2014]. They developed 28 independent
modules which, interacting, offered a complete living cell life cycle as an emergent re-
sult. They claim that such interactions might help scientists to understand cause-effect
relations among organelles into a real cell.

They selected a quite simple living unicellular bacterium called Mycoplasma geni-
talium, which have only 525 genes against the almost 20 thousand genes a human cell has.
Duplication period manifested as an emergent property that results from a complex inter-
action between distinct replication phases. They developed a comprehensive whole-cell
model. Simulations, source code, knowledge database, visualization code, and experi-
mental data are available online1.

3. A bio-inspired solution for SoS’s emergent behavior

Biological analogies are recurrent in computer science. Ant colony [Dorigo and Birattari
2010], swarm of bees [Karaboga et al. 2014], neural networks [Schmidhuber 2015],
and genetic algorithms [Karakatic and Podgorelec 2015] are examples of computational
solutions whose operating principles are based on existing real biological systems. Thus,
given SoS inherent characteristics, and living whole-cell simulation results, features, and
open issues, we envisioned some points of intersection between both areas that could
benefit each other to join efforts toward unified results.

Briefly, a cell can be individually considered as an SoS. The interaction among
their organelles displays behaviors. Together, such interactions and individual behaviors
culminate in cellular function and dynamics. In this sense, a biological analogy can help
to realize how emerging behaviors occur and how this spontaneous phenomenon can be
represented and raised as a function of individual constituents and their individual capabil-
ities. Thus, it can be possible to migrate such interaction strategies among constituents to
better 1) represent interactions among constituents, 2) realize the impact of constituents’
individual influences over the whole behavior, and 3) engineer such emergent behaviors
in SoS.

In fact, the whole human body can be seen as a huge and complex SoS, where
its constituents are themselves, other complex SoS. Human body SoS is divided in or-
gans. Organs interact among them to deliver an emergent behavior: your life. Organs are
themselves other SoS, since they are constituted by specific tissues. Tissues are also SoS,
since they are a composition of cells. And cells themselves are minor SoS constituted
by organelles, such as Golgi complex, plasma membrane, and mitochondria. Organelles

1https://simtk.org/home/wholecell

35



interaction deliver the whole-cell life cycle as an emergent behavior. Such as automotive
systems, which are composed by smaller parts which interact to deliver the car operation,
biological systems can be perceived under an SoS perspective.

Figure 1. A model of a Cell separated by organelles [Karr et al. 2012].

Figure 1 presents a model of a living cell. That figure helps to realize a cell
under an SoS perspective. Under this perspective, many small distinct structures have
independent work, such as RNA processing, RNA decay, RNA modification, Ribosome
assembly, and Protein processing. Those structures play, each one, a constituent role,
delivering individual capabilities which, together, contribute to the whole cell life cycle,
until the cell division.

We could establish a comparison between SoS characteristics and a cell (as an
alive SoS) characteristics. That comparison is available in Table 1. To establish such
comparison, we based it on the criteria available in a conceptual model for SoS avail-
able in literature that lists all of the essential characteristics an SoS should exhibit [Ben-
ites Goncalves et al. 2014]. Under this perspective, organelles work as constituents of
the Cell SoS. The Global Mission could be growing, reproducing, or even the cell entire
life cycle. About software dominance, the simulated cell is based on several software
modules. Each organelle offers independent behavior, what characterizes operational in-
dependence of their constituents. Each organelle is represented by one or more software
modules, and those modules are required to evolve to approach their configuration pa-
rameters to reliably represent a real cell. Thus, the simulated cell requires evolutionary
development. The “execution” can be considered the emergent behavior. Geographic
distribution is a relative concept, and could be considered in the following way: if the

36



SoS Cell
Constituents Organelles
Global mission Growing and reproducing
Software dominance The simulated cell is based on 28 distinct software

modules
Operational independence Each organelle or inner structure (simulated as a soft-

ware module) has independent behavior and operation
Evolutionary development Improvements and calibrations in the parameters

which rules the organelles or cell structures operation
require constant evolution of modules, featuring evo-
lutionary development

Emergent behavior Cell’s metabolism and life cycle are the emergent be-
haviors

Geographical distribution The real cell has a minimum distance among their or-
ganelles. Simulation dispenses it.

Connectivity (Interoperability) Also known as interoperability, organelles interact to
deliver emergent behavior.

Table 1. Comparison between SoS and cells under Benites et. al perspective
[Benites Goncalves et al. 2014].

structures interoperating are “physically separated”, they deliver geographic distribution.
Since organelles are physically distinct entities, the real cell offers such distribution, and
the software modules simulate it. Finally, such organelles interact and are connected
through their inner processes to deliver the emergent behavior. Then, they offer interop-
erability. And, for the set of characteristics they exhibit, a cell can actually be considered
a biological SoS.

4. Discussion

We glimpsed both research areas as potential to benefit each other. SoS community can
benefit from cell simulation, and cell simulation can benefit from SoS approaches. Cell
simulation approach delivers techniques and source code to simulate a living cell. It can
be adapted to engineer suitable simulation environments for the forthcoming smart SoS,
using such prominent results regarding emergent behaviors as a composition of individual
capabilities to an effective emergent behavior in SoS (a still open issue). Conversely,
an SoS development approach could benefit whole-cell simulation, providing a lighter
approach of simulation for it. Well-succeeded SoS simulation approaches, such as Agent-
based SoS simulation approaches [Pavon et al. 2011], can be migrated for cell simulation,
improving those results and visualization. This kind of adaptation can bring advantages
for the simulator maintainability and development, since it uses an approach already well-
succeeded for SoS issues.

Simulation is, in fact, a recurrent and traditional paradigm and a genuine step in
Systems and SoS Engineering approaches [Graciano Neto et al. 2014]. It brings important
advantages, such as an early perception of errors, defects, and problems that need to
be corrected in specification level before integration step being conducted; and better
consistency, verification and validation. Simulation may early evidence phenomena if

37



simulation has been faithfully modeled, providing data not previously obtained.

Simulation make intensive use of models. Conversely, models give support for
verification and validation processes, through the use of simulation or other automated
techniques. Some types of models are called runtime models, enables simulation of the
SoS operation via model execution. Agents are frequently mentioned as a complete and
mature technology to perform SoS simulation, and can be considered the state-of-art for
SoS simulation. SiCoSSyS approach is a sample approach to engineer SoS based on
agents simulation [Pavon et al. 2011]. In fact, agents could be used as a lightweight
approach to represent each of the modules listed by Covert et al., inovating in cell sim-
ulation, and providing the cellular structures capabilities individually, and the whole life
cycle as an emergent behavior.

On the other hand, the realization of organelles interaction to deliver its life cycle
as an emergent behavior could benefit SoS community. Cell structure interaction pat-
terns could be investigated and reproduced in SoS development, achieving an important
requirement imposed by SoS engineering initiatives: addressing of emergent behavior.
In cells, emergent behavior really emerge as a result of the synergy between the parts
which interact. However, in SoS, the emergence is deliberately and intentionally de-
signed [Boardman and Sauser 2006]. Boardmand and Sauser mention that emergent be-
havior dare not be restricted to what can be foreseen or deliberately designed. They claim
that an SoS must be richer in emergence, and that a challenge for the SoS designer is to
know, or learn how, as the SoS progresses through its series of stable states, to create a
climate in which emergence can flourish, and an agility to quickly detect and destroy un-
intended behaviors, much like the human body deals with unwanted invasions [Boardman
and Sauser 2006]. Following this trend, investigating such recent results in cell simula-
tion could benefit SoS engineering to provide and accomplish some highlighted desired
challenging characteristic.

Regarding related work, Boardman and Sauser [Boardman and Sauser 2006] also
establish some parallels between the concept of software systems and biological systems,
such as the similarities between the human brain and their neurons as constituents, and
the colonial behavior shared by ants. However, authors do not discuss how those similar-
ities could be explored to benefit both areas, SoS engineering/simulation and biological
simulations.

Indeed, e-Science community2 has approached some efforts to connect biology,
astronomy, and other science efforts to computational solutions. e-Science consists of
science that is carried out in highly distributed environment, using computationally inten-
sive solutions [Taylor et al. 2014]. We did not find any evidences of an SoS approach for
cell simulation or a cell simulation approach for SoS conception being communicated, as
in SoS community, as in e-Science community.

5. Final Remarks

This paper presented some insights for a cross-fertilization between living cell simulation
and SoS development areas. We offer this initial results as an starting point of investiga-
tion for both e-Science and SoS communities. We expect that this first effort can serve

2http://www.nesc.ac.uk/

38



as an enlightening result, which effectively establish an existent parallel among those re-
search areas. Bio-inspired solutions are recurrent in Computer Science. We expect that
our envisioned approach, despite the glimpsed possibilities for cell simulation advances
itself, could contribute to improve techniques for effectively providing emergent behavior
for SoS. Such SoS intrinsic feature is still an open issue. We wish to provide it for SoS
not as a mechanical and nondynamic property, but as a genuine and adaptive condition.

6. Acknowledgements
Authors thank Goiás Research Foundation (FAPEG) and FAPESP by financial support
under grant number 09/2013, ID 2013.009.97100854, and grant number 2014/02244-7,
respectively.

References
Andrews, Z., Payne, R., Romanovsky, A., Didier, A., and Mota, A. (2013). Model-based

development of fault tolerant systems of systems. In SysCon, pages 356–363.

Batista, T. (2013). Challenges for SoS Architecture Description. In 1st SESoS, SESoS
’13, pages 35–37, New York, NY, USA. ACM.

Benites Goncalves, M., Cavalcante, E., Batista, T., Oquendo, F., and Yumi Nakagawa,
E. (2014). Towards a conceptual model for software-intensive system-of-systems. In
Systems, Man and Cybernetics (SMC), 2014 IEEE International Conference on, pages
1605–1610.

Board, B. E. (2014). The guide to the systems engineering body of knowledge (sebok).
Technical report.

Boardman, J. and Sauser, B. (2006). System of systems - the meaning of of. In System of
Systems Engineering, 2006 IEEE/SMC International Conference on, pages 6 pp.–.

Covert, M. W. (2014). Simulating a Living Cell. Scientific American, (310):44–51.

Dorigo, M. and Birattari, M. (2010). Ant colony optimization. In Sammut, C. and Webb,
G., editors, Encyclopedia of Machine Learning, pages 36–39. Springer US.

Fitzgerald, J., Bryans, J., and Payne, R. (2012). A formal model-based approach to en-
gineering systems-of-systems. In Camarinha-Matos, L. M., Xu, L., and Afsarmanesh,
H., editors, Collaborative Networks in the Internet of Services, volume 380 of IFIP
AICT, pages 53–62. Springer Berlin Heidelberg.

Freddolino, P. and Tavazoie, S. (2012). The dawn of virtual cell biology. Cell, 150(2):248
– 250.

Graciano Neto, V. V., Guessi, M., Oliveira, L. B. R., Oquendo, F., and Nakagawa, E. Y.
(2014). Investigating the model-driven development for systems-of-systems. In SESoS,
ECSAW ’14, pages 22:1–22:8, Vienna, Austria. ACM.

Jansen, S. and Cusumano, M. (2012). M.: Defining software ecosystems: A survey of
software platforms and business network governance. In Proceedings of the interna-
tional Workshop on Software Ecosystems, pages 41–58.

Karaboga, D., Gorkemli, B., Ozturk, C., and Karaboga, N. (2014). A comprehensive
survey: artificial bee colony (abc) algorithm and applications. Artificial Intelligence
Review, 42(1):21–57.

39



Karakatic, S. and Podgorelec, V. (2015). A survey of genetic algorithms for solving multi
depot vehicle routing problem. Applied Soft Computing, 27(0):519 – 532.

Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V., Jacobs, J. M., Bolival, B.,
Assad-Garcia, N., Glass, J. I., and Covert, M. W. (2012). A Whole-Cell Computational
Model Predicts Phenotype from Genotype. Cell, 150(2):389–401.

Maier, M. W. (1998). Architecting principles for systems-of-systems. Systems Engineer-
ing, 1(4):267–284.

Matsuoka, Y. and Shimizu, K. (2015). Current status and future perspectives of kinetic
modeling for the cell metabolism with incorporation of the metabolic regulation mech-
anism. Bioresources and Bioprocessing, 2(1):4.

Nakagawa, E. Y., Capilla, R., Dı́az, F. J., and Oquendo, F. (2014). Towards the dynamic
evolution of context-based systems-of-systems. In WDES 2014, pages 45–52, Maceió,
Brazil.

Nielsen, C. B., Larsen, P. G., Fitzgerald, J., Woodcock, J., and Peleska, J. (2013).
Model-based engineering of systems of systems. Technical report. Available from
http://www.compass-research.eu/resources/sos.pdf.

Pavon, J., Gomez-Sanz, J., and Paredes, A. (2011). The sicossys approach to sos engi-
neering. In SoSE 2011, pages 179–184, Irvine, CA, USA.

Pérez, J., Dı́az, J., Garbajosa, J., Yagüe, A., Gonzalez, E., and Lopez-Perea, M. (2013).
Large-scale smart grids as system of systems. In SESoS 2013, pages 38–42, Montpel-
lier, France.

Romay, M. P., Cuesta, C. E., and Fernández-Sanz, L. (2013). On self-adaptation in
systems-of-systems. In 1st SESoS, SESoS ’13, pages 29–34, New York, NY, USA.
ACM.

Santos, D. S., Oliveira, B., Guessi, M., Oquendo, F., Delamaro, M., and Nakagawa,
E. Y. (2014a). Towards the evaluation of system-of-systems software architectures.
In WDES 2014, pages 53–57, Maceió, Brazil.

Santos, R., Gonçalves, M., Nakagawa, E. Y., and Werner, C. (2014b). On the relations
between systems-of-systems and software ecosystems. In WDES 2014, pages 58–62,
Maceió, Brazil.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Net-
works, 61(0):85 – 117.

Silva, E., Cavalcante, E., Batista, T., Oquendo, F., Delicato, F. C., and Pires, P. F. (2014).
On the characterization of missions of systems-of-systems. In Proc. of the ECSAW,
pages 26:1–26:8, Vienna, Austria. ACM.

Taylor, I. J., Deelman, E., Gannon, D. B., and Shields, M. (2014). Workflows for e-
Science: Scientific Workflows for Grids. Springer Publishing Company, Incorporated.

Weyns, D. and Andersson, J. (2013). On the challenges of self-adaptation in systems of
systems. In 1st SESoS, SESoS ’13, pages 47–51, New York, NY, USA. ACM.

40


