
  

Designing a Software Architecture for a  

Railway Safety Platform  

Adailton Lima1, Rodrigo Reis1, Melina Alberio2, Carlos Lopes1, Cleidson de 
Souza1,2 

1Software Engineering Laboratory (LABES) Federal University of Pará (UFPA) Belém, 
Pará, Brazil 

2Vale Institute of Technology (ITV) Belém, Pará, Brazil 
 

Abstract. We were faced with the challenge of designing solutions to increase 
the safety of all people involved with two corporate railways: employees 
working on transportation and maintenance services and citizens who live 
along the railroads. Instead of focusing on different solutions, we want to 
design a software platform that will allow the evolution of a software 
ecosystem. In this paper, we present the initial design and assessment of the 
software architecture of this platform. We briefly report the current 
architecture itself, focusing on some of the design decisions we made as well 
as our evaluation of the ATAM method to support the design of software 
platforms.  

1. Introduction 
A large mining company headquartered in South America funded us to develop new 
information and communication technologies aiming to increase the safety of 
employees and citizens who work or live close to the companies’ railways. In addition 
to the risks to the company’s employees and contractors, there are several cities and 
communities along these railways. This means that the technologies being designed in 
this project should not only improve the safety of company’s employees, but also 
minimize the risks to the people who live along the railways. 

 The authors then faced an interesting challenge: how to design technology to 
enhance the safety of company’s employees, contractors and citizens who live along 
these railways? The typical approach would be to identify the main risk scenarios and 
then design solutions that were specific to these scenarios. However, instead of doing 
that, we have decided to build a software platform to provide a broader set of services 
that can be used by different solutions for railroad safety. We then faced the problem of 
designing a software platform as a problem of designing a complex software system 
with a number of important questions related to the design of its underlying software 
architecture. As such, we chose to adopt a method for designing software architectures; 
in this case, we adopted the ATAM (Architecture Tradeoff Analysis Method) method 
[Kazman 2002]. This paper reports the software architecture we designed including the 
design decisions we have made, as well as an assessment of the ATAM as a method for 
designing software platforms. 

2. Software Ecosystems, Platforms and their Design 

According to [Bosch 2009], “a software ecosystem consists of a software platform, a set 
of internal and external developers and a community of domain experts in service to a 

81



  

community of users that compose relevant solution elements to satisfy their needs”.  The 
question then is how to design such a software platform? How does the underlying 
software architecture of this platform should look like? What are the recommendations, 
guidelines or methodologies that can be used to design such a software platform?

 Related work to ours can be grouped in a small number of groups. In the first 
group, we find papers describing how organizations moved from a software product to a 
software (platform) ecosystem. Examples of this approach include [Costa et al. 2013] 
and [Bosch 2009], who discuss how to move from a software product line to a software 
ecosystem. Another group of related work focuses on modeling software ecosystems as 
a way to understand how they evolve over time (see for instance, [Monteith 2013]). 
Finally, the third set of related work focuses on the software architecture of software 
ecosystems. This includes the analysis of how extensible the APIs of these platforms are 
and the architectural challenges faced in software ecosystems [Bosch 2009].  

 Since we were not able to find an approach that could fit our particular context, 
we decided to adopt the ATAM method to guide the design of our software architecture. 
We chose ATAM because it is a fairly known method for architectural definition and 
assessment. In the following section we will very briefly describe our usage of the 
ATAM method. 

3. Using the ATAM Method 

As a process of “risk identification”, the ATAM can be conducted in an early stage of 
the project, where there is no detailed information or implementation available but 
requirements that are used to start a discussion on the decisions about the software 
architecture.  One of the first steps we took was to identify the stakeholders related to the 
railroad safety platform development. The main stakeholders are: 

• S1: Company’s information technology (IT) group responsible for the 
deployment of new information and communication technologies; 

• S2: Researchers developing new information and communication safety 
solutions that will eventually be integrated into the software platform; and 

• S3: Internal or external software developers that need to access platform services 
and data to create new safety solutions. 

 S1 stakeholders are aware of the current infrastructure constraints and future 
expansion plans. Their strategic view about the IT infrastructure is essential to 
understand the limits that new safety services and technologies will face. Their 
participation is also important to provide an overview of possible new technologies 
needed to upgrade the IT services of the company.  The participation of S2 stakeholders 
is essential to identify the services, data and quality attributes that the software platform 
must provide.  Finally, S3 are stakeholders responsible for creating new safety solutions 
that will exist on the platform. These solutions might be clients of data/services 
provided by other solutions or providers of data/services to other solutions.  

 Most of the identified quality attributes are related to the communications 
infrastructure that allow the services and data providers to use channels to provide 
online monitoring and notification in the railway.  With these quality attributes we 
designed an early version of the software architecture based on a component and 
layered view of services, devices and applications involved in the safety platform. This 
step was very important to create a shared view that included all components working 

82



  

together, since before that, the team only had a vague notion of the required services, 
without knowing how to integrate them. 

 Following the method, we interviewed an experienced S1 stakeholder. This 
stakeholder is a member of a larger team that is defining new communication 
technologies to be acquired and deployed on one of the company’s railways. His 
participation was important to validate the assumptions and quality attributes that 
should be provided by the communication services to support the actual railway safety 
platform. This was critical due to the geographical distance between our team and the IT 
infrastructure team (other S1 members). To complicate things, this railway crosses the 
Amazon rain forest, and no detailed information about its infrastructure was available at 
the beginning of the project.  Through the S1 stakeholder, we confirmed the existence of 
maintenance shafts distributed alongside the railway. However, not all of them have 
energy and network connectivity to guarantee high availability, one of the initial 
platform requirements.  

 As a result of the analysis of the interviews and initial architecture design, we 
defined different alternative scenarios for the designed architecture. In one of them we 
moved distributed services to a central server. This led us to an architectural tradeoff, 
where we must decide between (i) the cost to create the infrastructure to support local 
servers spread along the railroad and (ii) the cost to communicate messages and 
notifications in only one central server with a potential bottleneck for system 
performance. This is only one example of an architectural trade-off that we faced as the 
result of the ATAM method. Due to space constrains we cannot report all of them. 

4. Assessing the ATAM Method 

According to [Taylor 2013], a successful software ecosystem is the result of good 
architectural styles and design decisions in order to create an open environment that 
supports the success criteria of the platform. This does not mean that a good 
architectural style is sufficient for a successful software ecosystem, but instead it is an 
important and necessary condition. In fact, there are social and economical factors that 
influence the development of software ecosystems [Barbosa 2013].  

 Before we conducted the design and analysis process, the stakeholders were only 
aware of their “safety apps”, i.e., the software and/or hardware solutions they were 
implementing. At the time, none of them have thought about how their assumptions 
were affected by other components or the existing IT infrastructure. As a practical 
result, S2 and S3 stakeholders are now researching alternative designs to support their 
solutions because of the likely scenario of lack of communication with local servers.  

  It is important to mention that the same strength of ATAM is also a weakness. 
To be more specific, ATAM suggests that workshops and/or interviews should be 
conducted with important stakeholders, and especially software developers who will 
implement the architecture and, in our case, create solutions for that platform. However, 
one of the most important aspects of any software ecosystem is the possibility to tap 
into the talent of software external developers, i.e., developers who will create solutions 
that have not been imagined before. This means that the ATAM results can help explore 
the architectural space of the “known” solutions reported by the interviewed developers 
as well as solutions that are “similar” to these. If new solutions challenge the 
assumptions embedded in this architectural space, the architecture of the software 
platform might fail. Despite that, we still believe that ATAM provided an interesting 

83



  

starting point for us because it guided us through the process of designing the 
architecture of the software platform by documenting requirements and forcing us to 
think about design trade-offs. 

5. Conclusions 

An important aspect of any software ecosystem is its software architecture [Taylor 
2013]. This architecture needs to be open and flexible to allow software developers 
contribute with new and innovative solutions. While the research community recognizes 
the importance of this software architecture, most previous work focuses on the 
evolving a software platform from a specific software product [Bosch 2009] [Costa 
2013]. In other words, there is limited work suggesting how a software architecture 
should be designed when creating a new software ecosystem.  

 In this paper, we describe the usage of the ATAM method [Kazman 2012] to 
guide the definition and assessment of a software platform that is being built to increase 
the safety of employees and inhabitants who work and live alongside two major 
railways in Brazil. We also report on our evaluation of the ATAM method in this 
context, i.e., the advantages and weaknesses of using ATAM to design a software 
platform for ecosystems.  

ACKNOWLEDGMENTS 

We would like to thank the funding from CNPq (process number 310468/2014-0) and 
Chamada 59/2013 MCTI/CT-Info/CNPq (process number 440880/2013-0).  

REFERENCES 
Barbosa, O., Santos, R., Alves C., Werner, C., Jansen, S. “A Systematic Mapping Study 

on Software Ecosystems through a Three-dimensional Perspective”. In: Software 
Ecosystems: Analyzing and Managing Business Networks in Software Industry. 
Edward Elgar, Cheltenham, UK. (2013).  

Bosch, J. From software product lines to software ecosystems, Proceedings of the 13th 
International Software Product Line Conference, 2009, San Francisco, California. 

Cataldo, M. and Herbsleb. J. D. Architecting in software ecosystems: interface 
translucence as an enabler for scalable collaboration. In Proceedings of the Fourth 
European Conference on Software Architecture: Companion Volume (ECSA '10), 
Carlos E. Cuesta (Ed.). ACM, New York, NY, USA, 65-72. 

Costa, G., Silva, F. et al., 2013. From applications to a software ecosystem platform: an 
exploratory study. In Proceedings of the Fifth International Conference on 
Management of Emergent Digital EcoSystems (MEDES '13). ACM, New York, NY, 
USA, 9-16. 

Kazman, R.; Klein, M.; Clements, P.; Evaluating Software Architectures: Methods and 
Case Studies. Addison-Wesley. SEI Series in Software Engineering, 2002. 

Kazman, R.; Michael Gagliardi, William Wood, Scaling up software architecture 
analysis, Journal of Systems and Software, Volume 85, Issue 7, July 2012, pp. 1511-
1519. 

Monteith, J. Y. and McGregor, J. D. Hadoop and its evolving ecosystem. In 
Proceedings of the Fifth International Workshop on Software Ecosystems, 2013. 

Taylor, R. N. The Role of Architectural Styles in Successful Software Ecosystems. In: 
Proceeding of the 17th International Software Product Line Conference, NY, 2013. 

84


