
A Conceptual Map of Model-Driven Development for
Systems-of-Systems∗

Valdemar Vicente Graciano Neto1,2, Milena Guessi2,3, Lucas Bueno Ruas de Oliveira2,3,
Flavio Oquendo3, Lina Garcés2, Elisa Yumi Nakagawa2

1Instituto de Informática (INF/UFG), Universidade Federal de Goiás, Goiânia, Brazil
2ICMC, University of São Paulo, São Carlos, Brazil

3IRISA-UMR CNRS/Université de Bretagne Sud, Vannes, France
valdemarneto@inf.ufg.br, {milena, oliveira, linamgr, elisa}@icmc.usp.br,

flavio.oquendo@irisa.fr

Abstract. SoS development involves difficult and error prone activities related
to the constituents runtime integration, interoperability configuration, and de-
ployment. A Model-Driven Development (MDD) approach for SoS can auto-
mate the aforementioned activities. However, there is no consensus about which
terminology, tools, or models are more suitable for representing SoS in MDD
approaches. This paper brings to light a conceptual map that exposes the main
concepts and relations of MDD approaches for developing SoS. We designed our
model with on the top of a systematic literature review. The main contribution
of this paper is the presentation of the proposed map to the community, sharing
the state-of-the-art about MDD for SoS.

1. Introduction
Systems-of-Systems (SoS) are systems engineered from a set of pre-existing indepen-
dent systems, so-called constituents. Constituents usually are heterogeneous and accom-
plish missions by means of interoperability [Fitzgerald et al. 2012]. They have a diversity
of technologies, communication mechanisms, operation systems, and data representation
[DeLaurentis 2007]. In this perspective, software engineering for SoS faces new challen-
ges, such as (i) providing interoperability among constituent systems, (ii) fitting constitu-
ents into a cohesive set of to deliver emergent behaviors [Maier 1998], and (iii) correctly
deploying SoS [Barbi et al. 2012].

Model-Driven Development (MDD) has been applied to deal with the aforemen-
tioned issues imposed by SoS [Farcas et al. 2010]. MDD has been reported in a variety
of domains [Farcas et al. 2010]. However, there is still a lack of consensus on the adop-
tion of languages and models for representing constituents with all their particularities,
and about the best technologies and practices to use. Then, there is a necessity for a
systematization of the relevant knowledge regarding MDD for SoS in order to support de-
cisions about the best MDD practices, tools, and approaches to apply in SoS engineering
[Graciano Neto et al. 2014]. Knowledge about MDD for SoS is spread in literature.

Conceptual maps can support SoS engineers in this endeavor. They represent kno-
wledge captured from a diversity of sources, exposing the main concepts of a subject

∗This research is supported by FAPEG (grant number 09/2013, ID 2013.009.97100854), and FAPESP
(grants 2014/01646-4, 2011/06022-0, and 2013/20317-9).

89



area and the relations that link them. This paper presents a conceptual map of MDD
for SoS. The main contribution of this paper is to propose an artifact that represents
the state-of-the-art in MDD for SoS. In particular, the main concepts documented in
this model were identified in a Systematic Literature Review (SLR) previously repor-
ted [Graciano Neto et al. 2014]. Remainder of this paper is structured as follows. Section
2 describes the background on MDD and SoS. Section 3 presents the conceptual map, ex-
plaining the concepts and how they are related to each other, and discusses our findings.
Section 4 presents final remarks.

2. Model-Driven Development for Systems-of-Systems

SoS are developed as a modern class of systems to match emerging society’s demands.
They are formed by pre-existing systems called “constituents”, and many of them can
participate in an SoS [DeLaurentis 2007]. SoS are engineered to deliver emergent beha-
viors, i.e., functionalities that can not be individually performed by any of its constituents
in isolate which is a result of collaboration among constituents [Fitzgerald et al. 2012].
SoS are classified according to level of managerial independence of constituents, i.e., the
autonomy given to a particular system for managing its own resources. They are classi-
fied as directed, collaborative, acknowledged, and virtual [Maier 1998]. Distinguishing
features are inherent to SoS, such as evolutionary development, dynamic behavior, ope-
rational independence, and geographical distribution [Maier 1998]. SoS development is
often driven by particular missions (e.g., goal, functionality, or set of tasks) that can only
be accomplished by the SoS as a whole [Silva et al. 2014].

MDD has been considered for SoS development due to the facilities it offers. It
uses models, metamodels, and model transformations to automatically generate code. A
model is, essentially, an abstraction of reality represented in a textual or visual language
(e.g., a Domain-Specific Language, DSL), and models must conform to their respective
metamodels. Metamodels are special models that guide and restrict how to construct other
models. Models and their respective metamodels are submitted as input to model trans-
formers and, through the use of model transformations, they transform the source models
into target models or code.

MDD approach contributes to SoS development since it [France and Rumpe 2007]:
(i) supports the visualization of the whole SoS, mastering complexity related to its large
dimensions issues; (ii) faces problems related to large configuration files used for mid-
dleware configuration and constituents deployment, converting this error-prone task into
a modeling task (more abstract); (iii) transforms models in correspondent software code
and configuration files, automating such task, reducing errors, and maximizing quality,
productivity, and traceability; and (iv) supports an adequate deployment, providing also
maintainability. For this scope, we use MDD as the acronym to designate all model-driven
approaches.

3. A Conceptual Map of MDD for SoS

Conceptual Maps represent knowledge [Novak and Ca?as 2006]. They facilitate the un-
derstanding on a topic, in a simple graphical format. They can be used for a diversity of
purposes, and have been introduced into work environments for problem solving purpo-
ses. Aiming at obtaining knowledge related to the development of SoS based on MDD

90



approaches, we previously performed an SLR [Graciano Neto et al. 2014]. As result, we
identified 12 studies related to MDD for SoS. After that, a conceptual map was established
according to the following steps:

Step 1: Definition of a core conceptual map;
Step 2: Analysis of each study and identification of important concepts. Those concepts

were associated to the core conceptual map, creating thus, a conceptual map for
each study;

Step 3: Combination of the 12 conceptual maps into a large conceptual map, using the
core conceptual map as a reference. This is the main artifact proposed by this
research.

A complete version of the conceptual map is externally available1. According to
our map, a MDD Approach for SoS can solve one or more problems, offer one or more
advantages, and it can be applied to one or more domains. Such an approach compri-
ses models, metamodels, transformations, and tools. A model must necessarily conform
to exactly one metamodel, and a model represents one or more SoS features. A MDD
Approach is supported by adequate tools.

According to the complete version of the conceptual map:
An SoS can be classified as Directed, Acknowledged, and Collaborative (Virtual SoS did not appear in the
SLR). SoS have received the following denominations in the literature: NetCentric SoS (which requires a
Virtual Machine to run), Large-Scale Network-Centric Embedded SoS, Large-Scale Distributed Real-Time
Embedded System, Interconnected IT Landscape, and Federation of Constituents.

An MDD Approach for SoS can be considered as a Systems Engineering Approach. MDD Approaches
for SoS can provide an important support for realizing tasks such as: composing constituents on COTS
with middleware support, and handling text files (configuration and deployment files). Furthermore, MDD
can offer manageable approaches for dealing with the diversity of technologies, data representation, opera-
ting systems, and languages of constituents; the independent function of constituents; the increasingly size
and complexity presented by configuration files that are demanded for configuring and deploying SoS; and
considerable complexity of large-scale SoS. MDD Approaches have already been applied for the SoS con-
ception in the following domains: Water Management Policies Systems, Air and Ground Traffic in Airport,
Flight Booking, Air Force, Flight Control Systems, and Avionics.

A Model can represent one or more SoS features such as Interoperability, Architecture, Missions, Self-
Management, Emergent Behavior, and Constituents. An SoS can execute one or more missions. As obser-
ved in the included studies, a mission can be represented by a Mission Scenario (or View), and Colored
Petri Nets. A Mission is composed by Mission Parts which are structured in software code (usually in the
constituents). A Constituent can be represented as an Agent, and each constituent presents a Behavior. The
set of constituents’ behaviors can form an Emergent Behavior at SoS level. Self-Management is an SoS
feature that can be modeled using SelfMML. Constituents are realized by a Middleware Configuration,
Mission Code, and COTS. These COTS can be hardware or software. An Architecture can be expressed
as a set of views. A view can be a Deployment view, a Structure View, an Activity View, and a Protocol
Definition View.

Transformations required by MDD Approach can be accomplished with tool support. Transformations can
be written using a Transformation Language. SoS are modeled using SoS Modeling Language. Examples
of SoS Modeling Languages include AADL (Architecture Analysis and Design Language), BPMN, CML
(COMPASS Research Group Modeling Language, a formal language), COMPASS (Composable Adap-
tive Software Systems), DEVSML, MATLAB, OPL and OPD (Object-Process Language and Diagram),
SelfMML, SySML (a recurrent language), Simulink, UML, WSDL, and XML. DEVSML is a part of DEVS
framework supported by Dunip, which is capable to model simulation environments. As transformation
languages, we can highlight oAW, XText, XSL, and XSLT, which are part of EMF (Eclipse Modelling Fra-

1Conceptual Map, http://goo.gl/3mW4D5

91



mework). Tools include ACTUAL [Barbi et al. 2012] (Automation of the Configuration and deploymenT
of distribUted AppLications), (a Middleware Platform), CoSMIC, GME/GMF, and INGENME.

Advantages of using MDD for SoS engineering include: Analysis, abstraction of constituents and interfa-
ces, automation, design precision, communication between stakeholders is facilitated, high-configurability,
high-confidence code generation, interoperability among models, knowledge capture, maintainability, pro-
ductivity, raising abstraction level, reuse, reduced development risk, simulation, traceability, validation.

4. Final Remarks
This paper presented a conceptual map covering MDD approaches for SoS, offering a
panorama of the area of MDD for SoS. It captures a collection of relevant concepts and
relations among them. Such map was conceived as a result of an SLR previously carried
out. We expect to contribute to the SoS community by offering an starting point from
where new researches could be conducted. Contributions include (i) a list of languages
currently used or recommended to model SoS, (ii) a collection of the main denominations
SoS have received, (iii) a catalog with the main technologies used to engineer SoS with
MDD approaches, (iv) a list of the main problems reported by studies as recurrent for
SoS development, (v) the main advantages which motivates the adoption of MDD in an
SoS development effort, and (iv) prominent domains where MDD have been successfully
applied for SoS engineering. Future works include (i) construction of other conceptual
artifacts from this map, (ii) consolidating such a model as representative for the area, and
(iii) conceiving metamodels for MDD approaches using this conceptual map as a starting
point.

Referências
Barbi, E., Cantone, G., Falessi, D., Morciano, F., Rizzuto, M., Sabbatino, V., and Scarrone, S.

(2012). A model-driven approach for configuring and deploying systems of systems. In SoSE,
Genoa, Italy.

DeLaurentis, D. (2007). System of systems definition and vocabulary. Technical report, School of
Aeronautics and Astronautics, Purdue University, West Lafayette.

Farcas, C., Farcas, E., Krueger, I., and Menarini, M. (2010). Addressing the integration challenge
for avionics and automotive systems from components to rich services. Proceedings of the
IEEE, 98(4):562–583.

Fitzgerald, J., Bryans, J., and Payne, R. (2012). A formal model-based approach to engineering
systems-of-systems. In Camarinha-Matos, L. M., Xu, L., and Afsarmanesh, H., editors, Colla-
borative Networks in the Internet of Services, volume 380 of IFIP AICT, pages 53–62. Springer
Berlin Heidelberg.

France, R. and Rumpe, B. (2007). Model-driven development of complex software: A research
roadmap. In FOSE 2007, pages 37–54, Minneapolis, MN, USA.

Graciano Neto, V. V., Guessi, M., Oliveira, L. B. R., Oquendo, F., and Nakagawa, E. Y. (2014).
Investigating the model-driven development for systems-of-systems. In SESoS, ECSAW ’14,
pages 22:1–22:8, Vienna, Austria. ACM.

Maier, M. W. (1998). Architecting principles for systems-of-systems. Systems Engineering,
1(4):267–284.

Novak, J. D. and Ca?as, A. J. (2006). The theory underlying concept maps and how to construct
them. Technical report, Technical Report IHMC CmapTools 2006-01.

Silva, E., Cavalcante, E., Batista, T., Oquendo, F., Delicato, F. C., and Pires, P. F. (2014). On the
characterization of missions of systems-of-systems. In Proc. of the ECSAW, pages 26:1–26:8,
Vienna, Austria. ACM.

92


