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Abstract. Systems-of-Systems (SoS) often support critical domains such as air
traffic control, and emergency and crisis response. Hence, their software archi-
tectures must be validated, guaranteeing that they conform to their specifica-
tion. However, SoS exhibit dynamic properties that bring difficulties to a static
validation. In this direction, simulations can aid by offering a dynamic view
for software architecture specifications of SoS. However, to be reliable, simula-
tion models must reproduce the real conditions of the surrounding environment
in which it will be deployed. Conversely, manually stimulating simulations is
tiring, repetitive, and error-prone. Then, we explored the possibility of auto-
matically deriving a ’stimulus generator’, that continuously emits stimulus for
the entities being simulated, supporting an early identification of failures, and
enabling correction before the deployment. In this direction, we present our
method to automatically derive a stimulus generator from a software architec-
ture description of SoS. The main contribution of this paper is providing such
method, suppressing the necessity of manually coding it. We evaluated our pro-
posal with an example of a real Flood Monitoring SoS. Preliminary results point
out that the stimulus generator automatically produced is reliable, emitting the
expected outputs, and suitably triggering the simulation.

1. Introduction

Software systems have become increasingly complex, forming alliances known as
Systems-of-Systems (SoS)1, and supporting critical domains. Due to that, SoS has a

1For sake of simplicity, SoS will be used interchangeably to express singular and plural.
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potential to cause damages, losses, and hazards. They must be constructed to be trust-
worthy, i.e., their operation must reliable in a way that people can safely rely and
trust on their success to accomplish their missions correctly, without failures, not caus-
ing accidents, working as expected, and rearranging themselves to keep their execution
[Oquendo and Legay 2015, Graciano Neto et al. 2016]. Then, it is imperative supporting
the SoS software development life cycle, in particular Verification and Validation (V&V)
activities, guaranteeing that the SoS yield the results expected by the missions assigned
to them, with an early identification of problems in SoS operation, assuring that the SoS
performs exactly what it is intended to [Michael et al. 2009].

Simulations are a recurrent approach in SoS Engineering (SoSE) to sup-
port such early anticipation of failures [Himmelspach and Uhrmacher 2007,
Michael et al. 2009, Sauser et al. 2010, Zeigler et al. 2012, Mittal and Rainey 2015,
Wachholder and Stary 2015]. In particular, simulations are useful for SoS, since they can
externalize the inherent dynamics associated to SoS operation. However, to be reliable,
SoS simulations must reproduce the real conditions in which it will be deployed. A
manual approach to reproduce such stimulus, which consists of stimulating the simulation
with inputs during its run-time, is costly, error-prone, tedious, and not correspondent to
the real rhythm in which the stimulus could be received. Additionally, manually coding
a stimulus generator is repetitive and domain-dependent, since each new SoS requires
a distinct stimulus generator. In order to reduce the costs associated to its engineering,
a possibility is automating the creation of such stimulus generator by a model-driven
derivation based on the SoS architectural descriptions that inherently stores information
about the inputs and outputs expected by the SoS.

In this paper we present specifically how to automatically derive a stimulus gener-
ator for simulation purposes of SoS software architectures by means of a model transfor-
mation. We document our SoS architecture in a high-level of abstraction using SosADL, a
new architectural description language (ADL) specially tailored for SoS [Oquendo 2016].
Furthermore, we adopt DEVS (a standard formalism for simulation approaches in SoSE
community) as the dynamic viewpoint to simulate SoS. Indeed, we establish a transfor-
mation from SosADL to DEVS (SosADL2DEVS) to deal with simulations of software
architectures of SoS while preserving their specification. The main contribution of this
paper is presenting such method, externalizing how to proceed with this transformation,
extracting such information about the stimulus from an architectural description of SoS to
support the creation of stimulus generators. We evaluated our proposal with a small-scale
instance of a Flood Monitoring SoS. Preliminary results are promising, with an effective
generation of a functional simulation. Our method brings straightforward derivation of
simulation code and traceability between software architecture and simulation models.
This paper is structured as follows: Section 2 outlines the concepts involved in our pro-
posal. Section 3 distills our method. Section 4 presents a brief evaluation we carried out.
Section 5 brings final considerations and points out for forthcoming work.

2. Simulation of SoS Software Architectures
Simulations are a recognized approach to deal with SoS dynamicity. They correspond to
an imitation of the operation of a real-world process or system over time, and involve the
generation of artificial stimulus and the observation of the effects to draw inferences con-
cerning the operational characteristics of the real system that is represented [Banks 1999].
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They (i) provide a visual and dynamic viewpoint for SoS software architectures, repro-
ducing stimulus the system can receive from a real environment, (ii) enable the prediction
of errors, diagnosing them and permitting corrections, and (iii) support the observation of
expected and unexpected emergent behaviors of an SoS. In fact, simulations are one of
the main groups of evaluation approaches for software architectures, typically relying on
a high level implementation of the software architecture for evaluating their performance
and accuracy [Bosch 2000, Santos et al. 2014]. SoS exhibit a further degree of complex-
ity due to their dynamic nature, i.e., their operation, in particular emergent behaviors, are
not visible in static specifications such as conventional software architecture documenta-
tions that adopts diagrams in UML or SySML. Thus, SoS software architectures demand
an additional view that captures dynamic aspects of SoS operation.

Software architectures are often described through modern Architectural De-
scription Languages (ADL) that offer canonical constructs to properly specify those
architectures. Their formalism levels include informal (usually based on lines, rect-
angles, and figures denoting structures), semi-formal, and formal [Garlan et al. 2010].
Remarkable examples include Darwin (semi-formal) [Foster et al. 2011], Wright (for-
mal) [Allen and Garlan 1997], π-ADL (formal) [Oquendo 2004], UML2 (semi-formal)
and SySML3 (semi-formal). However, those ADL have not been developed for properly
capturing SoS’ dynamics [Guessi et al. 2015]. Recently, a novel ADL called SosADL
was proposed for describing the architecture of SoS. It provides architectural con-
cepts and notation formally defined in terms of the π-calculus, and also supports the
specification of emergent behaviors [Oquendo 2016]. However, SosADL is not ex-
ecutable yet, and a dynamic approach is still required to support a plain visualiza-
tion of SoS operation. Hence, an approach to support dynamic aspects of SoS soft-
ware architectures descriptions is required since a long time and it is still an issue
[Zave 1993, Sauser et al. 2010, Graciano Neto and Nakagawa 2015].

In this direction, simulations can offer such dynamic approach for visualization
of SoS operation. Nevertheless, simulations often depend on some internal structure that
imitates the surrounding environment of an SoS, delivering the stimulus that are supposed
to be received by the SoS to trigger its operation [INCOSE 2016]. A stimulus generator
is a virtual simulation entity responsible for playing the role of environment, such as
temperature, wind, water level, and noise, or an entity which produces internal events in
the systems, i.e., it imitates the reception of inputs that the constituent system can produce
to itself, such as the collecting of an external data, the level of battery, of its geographic
position. Developing such structure usually relies on (i) an specification of ports, inputs,
outputs, and state diagram formalism in a low level of abstraction, (ii) a distinct stimulus
generator for every different SoS that we produce, and (iii) a careful investigation on SoS
requirements and architecture specification to elicit which stimulus should be provided,
which can be costly, and error-prone. In fact, the development of stimulus generators for
simulation purposes is not a new trend [Al-Hashimi 1995, Kitchen and Kuehlmann 2007].
Meanwhile, such approaches for automatically creating stimulus generator for simulation
of SoS software architectures have not emerged.

Recent studies have investigated the adoption of simulation in software engineer-

2http://www.omg.org/spec/UML/2.5/
3http://www.omg.org/spec/SysML/1.4/
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ing [de França and Travassos 2015, de França and Travassos 2016], and simulation has
certainly been applied for SoS development [Xia et al. 2013, Graciano Neto et al. 2014,
Bogado et al. 2014]. Regarding simulation of software architectures, Palladio4 offers a
solution [Becker et al. 2009]. However, there is no support for simulation of SoS software
architectures. Discrete Event Systems Specification (DEVS) is a well-established formal-
ism for simulating SoS in virtual environments [Zeigler et al. 2012]. However, it does
not preserve the architectural details of SoS software architecture specification and rely
in a low-level of abstraction formalism. Bogado et al. also rely on discrete event formal-
ism for representing software architectures of monolithic software [Bogado et al. 2014],
whilst Alexander et al. also deal with simulation of software architecture and dynamic
aspects, but they do not address software architectures of SoS in a strict way, relying on
the broader discussion of systems architecture perspective [Alexander et al. 2015].

2.1. SosADL and DEVS

In short, SosADL describes SoS, which can be expressed as a combination of architecture
declarations, systems declarations, and mediators declarations5. An architecture declara-
tion has an intrinsic behavior declaration, data types, and gates declarations. Gates are
abstractions that enable the establishment of connections. A connection can be estab-
lished to receive stimulus from or act on the environment, or simply for a communication
between constituents. Furthermore, the connection can be for input, output, or for both.
Data types can have inherent functions, and functions can have expressions associated.
Mediators and systems, as well as the SoS architecture itself, have gates, data types, and
behaviors. Systems play the role of constituents in an Architecture Behavior Declaration,
and Systems are mediated by mediators. SosADL supports emergent behavior representa-
tion by the idea of coalition, a temporary alliance for combined action among constituents
connected by mediators. Those behaviors are specified as part of the coalition behavior,
documenting how constituents should interact to accomplish a given set of missions6.

In turn, DEVS is structured based on atomic and coupled models. Atomic models
represent constituents, and coupled models represent the communications among con-
stituents, materializing the SoS as a whole and constituents’ interoperability. In DEVS,
Atomic models have the following elements: (i) a labeled state diagram, that performs
transitions due to input or output events; (ii) abstract data types definition, (iii) global
variables definition, (iv) variables initialization, (v) ports definition, and (vi) events def-
inition. An atomic model with only a state diagram specification and ports definition is
already executable. Coupled models are expressed as a System Entity Structure (SES),
i.e., a formal structure governed by a small number of axioms that expresses how atomic
models communicate. A straightforward generation of DEVS code does not guarantee
the simulation be executable. This happens because the SoS operation is deeply related
to the stimulus received from the environment that triggers the accomplishment of a mis-
sion. Thus, it is necessary to elaborate a specific entity in the simulation model that is
responsible for delivering the expected stimulus that drive the operation of the SoS: the
stimulus generator. Next section discusses how to automatically produce such stimulus

4http://www.palladio-simulator.com/
5Mediators are architectural elements that establish communication between two or more constituents
6More details about the syntax of architecture descriptions in SosADL and its elements can be found in

[Oquendo 2016].
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generator from SosADL models, properly transforming SosADL in DEVS.

3. A Model-Driven Derivation of a Stimulus Generator for Simulation of SoS
Software Architectures

We present our approach relying on a real example: a Flood Monitoring SoS (FMSoS),
i.e., a SoS composed of smart sensors (i.e., complex sensors that embed software) to
monitor the occurrences of floods in an urban area in the city of São Carlos in Brazil.
Rivers cross the city and, when the rains are intense, floods recurrently occur, causing
losses, damage, and iminent danger for population. The FMS we describe is concerned to
validate a single emergent behavior: flood alert. Such SoS consists of a collaborative SoS,
in which there is not a central authority that orchestrate the constituents’ functionalities to
accomplish missions. Figure 1 gives an illustration of the FMSoS7. Sensors are spread on
the river’s edges with a regular distance among them, and mediators exist between every
pair of sensors in a pre-established distance between them. The data collected by sensors
are collected and transmitted until reaching the gateway. In case of flood, the gateway
emit an alarm for the public authorities. All of the codes presented henceforth are based
on this example.

Figure 1. A Flood Monitoring System-of-System (FMSoS).

FMSoS is an SoS, since it exhibits [Maier 1998]:
Operational independence of the constituents, i.e., smart sensors perform their own
missions despite being out of the scope of the SoS;
Managerial independence of constituents, since a diversity of stakeholders and enter-
prises might independently own, deliver, and manage the smart sensors;
Distribution, since they interoperate through a communication network;
Evolution, since the SoS evolves as a consequence of changes in the configuration or
functionality of smart sensors; and
Emergent behavior, since one unique constituent could not deliver a flood alert by itself.
For instance, if only one sensor performs its activities in an urban area, it could not notify
a flood on time, being not effective. Conversely, if it is used outside of the urban area,

7Credits for the images used to compose the figure: http://goo.gl/TTOlAa, http://goo.gl/QCUAKY,
http://goo.gl/a9Y0Dw.
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trying to previously diagnostic the flood, it would be so far that could not reach a gate-
way to communicate to communicate the danger. Also, it might emit a false alert, since
the flood could be limited to another place. Hence, the flood alert is a result of the in-
teroperability among a diversity of constituents working in cooperation, spread along the
river edge. Furthermore, we deal with a weak emergent behavior, since they can not be
predicted by static models (simple emergent behaviors), and they are reproducible in sim-
ulations (but not in static models), emerging predicted behaviors but still with potential to
non-predicted behaviors that must be handled.

We selected SosADL as the SoS software architecture specification notation, and
DEVS as the simulation formalism. We adopted a DEVS dialect called DEVS Natural
Language (DEVSNL) that enables programming atomic and coupled models in a human-
like format in tools such as MS4ME8. A SosADL code is submitted as input for a XTend
script that materializes the Code Generator. A functional code written in DEVSNL is
generated as output, establishing a SosADL2DEVS transformation. Briefly, considering
a broad view of the transformation, the concepts of System and Mediator in SosADL are
transformed into Atomic Models in DEVS. Behaviors are materialized into labeled state
diagrams in DEVS that configures the constituents operation. Architecture, Coalition, and
SoS become Coupled Models. Connections and gates become Ports, and Data Types and
Functions are mapped in data types and functions in DEVS.

Each statement (line of code) within a SosADL behavior is converted in one or
more state transitions in DEVS. In DEVS, transitions can occur due to (i) a data received,
expressed as ?data, (ii) a data sent, expressed as !data, and (iii) a spontaneous transi-
tion, without any input or output. This is the approach we used to generate constituents,
mediators, and gateway9. However, the derivation of the stimulus generator is quite differ-
ent. In SosADL, there is a special type of connection called environment, that abstracts
interaction of an SoS with the surrounding environment, emitting outputs to the environ-
ment, or receiving stimulus from it, e.g., when the system is a sensor. Moreover, SosADL
offers a library called Localization, that offers invoking Global Positioning System (GPS)
functionalities.

All of the SosADL aspects must be traduced to DEVSNL to create a functional
simulation. However, there are no straightforward elements in DEVSNL to automati-
cally produce environment stimulus. Thus, it is necessary to create a stimulus generator
that delivers the expected inputs the constituents wait to perform transitions and to start
their behavior execution. SosADL models are analyzed by the transformation algorithm,
searching for environment connections and callings for localization libraries. For con-
vention, constituents are analyzed first, since they are the frontier of a SoS, and state
transitions for the stimulus generator are created to serve their necessities. After that, Me-
diators are investigated. Lastly, Gateways are analyzed. Since usually constituents starts
the SoS operation due to the stimulus they receive from environment, we prioritize the
analyzes of constituents. If there are congruent statements between constituents and me-
diators, i.e., a same type of stimulus that must be received for both, a unique transition is
created in the stimulus generator. Each connection specified as an environment con-

8http://goo.gl/NmBBuu
9We do not discuss this mechanism with details in this paper, since the focus is the representation and

derivation of a stimulus generator. Other details are discussed in a forthcoming paper.
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nection produces one transition in the specification of the state diagram in the resulting
stimulus generator. Hence, the stimulus generator consists of a special type of system
(in the context of the simulation) that has a continuous behavior (a behavior materialized
as a loop) to emit stimulus by output state transitions, starting and keeping the SoS in
operation.

In DEVS, such stimulus generator is also represented as an Atomic Model. Listing
1 shows an excerpt of a code in SosADL that specifies one of the sensors that compose the
FMSoS. Some parts are hidden since they do not influence in the discussion of stimulus
generation derivation. It is possible to see that the gate energy offers two environment
connections (Lines 12 and 13): one to receive a threshold (a limit of energy that is con-
sidered enough to keep the sensor in operation), and power, that is used to receive the
level of battery available. Within the behavior sensing, it is possible to see the sensor
receiving its coordinate and receiving the energy threshold and power level. In turn, List-
ing 2 shows the code in DEVSNL that specifies the stimulus generator produced using
our approach. We changed the names of the states to become them more readable. It il-
lustrates not only the transitions generated from the code of the sensor showed in Listing
1, but also from the codes of mediators and gateway (Lines 5 to 15). In Listing 2, the
stimulus generator has three output ports (Lines 1 to 3) that simulates the collection of
the geographic positions (lps), power level, and the reception of the water level by the
mediators, sensors, and gateway. Figure 3 depicts a state diagram equivalent to the DEVS
code presented in Listing 2. It delivers the aforementioned data, and comes back to the
state LPSsent, forming a loop that keeps the stimulus continuously running and offering
the stimulus for the operation of the SoS.

4. A Brief Evaluation
We adopted a specification in SosADL of a real Flood Monitoring SoS already in opera-
tion to evaluate our proposal [Horita et al. 2015]. Our aim was evaluating if the simulation
(automatically produced) would run as expected and deliver, as a result, a single emergent
behavior. A brief video demonstrating the generated simulation is available externally10.
It shows the simulation running and the stimulus generator successfully delivering the
outputs necessary to the simulation execution. Indeed, the approach was submitted to do-
main experts. They classify our approach as suitable to generate a stimulus generator that
is reliable and correspondent to the stimulus specified in high-level in the SoS software
architecture specification.

Regarding threats to validity, we can mention the possibility of failures if the SoS
architect forget to qualify the environment connections in SosADL with the keyword
environment. If it occurs, the simulation can fail, since the expected input can be
never received. Indeed, any error regarding the declaration of environment connections
at design-time can affect the final simulation. Moreover, more accurate evaluation with
larger contexts and applications are still required.

5. Final Remarks
This paper presented a model-driven solution to automatically derive a stimulus genera-
tor to be used in a simulation of SoS software architectures. Our proposal contributes

10https://goo.gl/pdGCIC
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Listing 1. A specification of a Sensor in SosADL.

1 //’with’ imports declarations suppressed
2 // Description of Sensor as a System Abstraction
3 library WsnSensor is {
4 system Sensor( lps:Coordinate ) is {
5 // Declaration of local types hidden
6 gate measurement is {
7 connection pass is in { MeasureData }
8 connection measure is out { MeasureData }
9 }

10
11 gate energy is {
12 environment connection threshold is in { Energy }
13 environment connection power is in { Energy }
14 }
15 gate location is {
16 connection coordinate is out { Coordinate }
17 }
18
19 behavior sensing is {
20 via location::coordinate send sensorcoordinate
21 via energy::threshold receive powerthreshold
22 repeat {
23 via energy::power receive powerlevel
24 if( powerlevel > powerthreshold ) then {
25 choose {
26 via measurement::sense receive data
27 via measurement::measure send tuple {
28 coordinate = lps, depth = data::convert( ) }
29 } or {
30 via measurement::pass receive data
31 via measurement::measure send data
32 } } }}}}

Listing 2. Code DEVSNL
for a stimulus generator.

1 generates output on lps!
2 generates output on powerLevel!
3 generates output on sense!
4
5 to start hold in s0 for time 1!
6 after s0 output lps!
7 from s0 go to LPSsent!
8 hold in LPSsent for time 1!
9 after LPSsent output powerLevel!

10 from LPSsent go to powerLevelSent!
11 hold in powerLevelSent for time 1!
12 after powerLevelSent output sense!
13 from powerLevelSent go to

waterLevelSent!
14 hold in waterLevelSent for time 10!
15 from waterLevelSent go to LPSsent!

Figure 2. A State Diagram equiva-
lent to the DEVS code generated for
the stimulus generator of a FMSoS.

by automating the process of generation of that stimulus generator, bringing produc-
tivity, traceability between the models. This solution is a proposal of a joint effort of
two research groups: SofTware ARchitecture Team (START/ICMC-USP) and ArchWare
(IRISA/UBS), and is part of a broader approach to support validation of emergent be-
haviors in software architecture of SoS by the adoption of model driven derivation of
a simulation of SoS. Future works include scaling the solution, testing the confidence
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of the model-driven transformation, and conducting experimental studies to evaluate our
proposal.
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